
iHaxGamez 1.6.20 Documentation
Note: iHaxGamez is for amusement purposes only. By using this program, you 
accept full responsibility for your actions. You agree that the developers of iHax-
Gamez are NOT, in ANY way, responsible for any damage to you, your software, 
your computer, or anything else caused through the use of this or any other pro-
gram. 

Note: Flash applications are special. There is a section at the end about how to 
hack your favorite Flash based application. Look there now if you know every-
thing else about iHaxGamez. (Even if you think you know about Flash games, I 
recommend you review the info.) 

Yet another Note: Did you know that with over 500,000 downloads of iHaxGamez, 
nobody has ever donated a single penny to my PayPal based pizza fund?

About iHaxGamez: 

iHaxGamez was written by me, Raymond Wilfong, for use on Macintosh OS X. It was 
designed with two purposes in mind. The first is that Video Games are meant to be fun, 
and mindless. Extra lives and free money help make the game more fun, and mindless. 
This program will help you find and adjust these (and many other) values in your game. 
The second reason is that I wanted to learn Objective-C and the Cocoa framework for 
Macintosh OS X development. I also wanted to check out the Xcode development tool 
from Apple.

The current version of iHaxGamez was compiled to be used on OS X 10.5, and newer, 
on 32 and 64 bit hardware. The disk image for the distribution also has an updated ver-
sion that works on OS X 10.4. This should only be used with older systems that have 
not been upgraded to 10.5.

iHaxGamez License: 

iHaxGamez is being released as free, open source software under the GPLv2. For more 
information, contact rwilfong@rewnet.com with “iHaxGamez” in the subject line. Al-
though the license included in the build does not mention this, I am also hereby releas-
ing this program as Public Domain source code, so use it however you want, and don t 
worry about license limitations. 

Page 1 of 5



iHaxGamez Usage:

iHaxGamez consists of three windows: The Authentication Window, the Main Window, 
and the Search Window. 

The Authentication Window is the 
standard window that OS X shows 
when it needs to upgrade the 
authorization rights of an application. 
In this case, iHaxGamez needs to be 
authorized as an administrator of 
your machine so that it can access 
the memory of other running applica-
tions (such as your game). 

The Main Window allows you to select 
a running process. You may manually 
refresh the Process List at any time 
by clicking the Refresh button. The 
process list refreshes automatically 
whenever the form is reactivated. 
Once you have selected a Process, 
click the Search button to open a 
Search window for that process. 

The Search Window 
is where most of the 
work happens.You 
start by entering a 
search value into the 
Search For field. Then 
you choose the Data 
Type for the Search 
as described below. 

Page 2 of 5



Choosing the Data Type:

Note: 99.9% of the time you will probably be searching for a 4 Byte integer. This is 
the default type selected, so leave it unless you understand the following infor-
mation.

The data type can be a hard decision when youʼre unfamiliar with the way computers 
store values.Currently, iHaxGamez can handle searches for Integers (numbers with no 
fractional part such as 120), Floating-point (Float) numbers (numbers with fractional 
parts such as 3.14159) and Strings (a collection or characters). You may now be asking 
why you can chose from four different Integer types, two different Float types, and two 
types of strings. This is because small Integers need fewer memory locations than big 
Integers. And, high precision Floating-point numbers need more memory locations than 
low precision Floating-point numbers. And ASCII character strings take less memory 
than Unicode strings. 

When the original programmer of your game wanted to store the number of lives you 
can have, he or she decided what size Integer you would need. Most of the time, itʼs 
easiest to use a 4 byte (32 bit) Integer. But sometimes, to save computer memory, they 
decide to only use two or one byte Integers. If the largest Integer value will be 127 or 
less, one byte will work. If 32767 is the limit, two bytes are needed. For Billions 
(2,147,483,647) you need 4 bytes. Note: For those of you who know all this, I decided 
not to make the user decide between signed and unsigned integers. All entered integers 
are presumed to be unsigned. If you enter a negative integer it will be displayed back as 
a big positive number. 

Floating-point numbers work in a similar way. However, the rules for deciding which to 
use are different because Floating-point numbers can be very large, but the size differ-
ence (4 bytes or 8 bytes) is based on the number of significant digits. For example, 3.14 
has three significant digits and 3.1415927 has eight significant digits. I suggest you 
search for 8 byte Floats first because you will get fewer results than if you search for 4 
byte floats. If nothing comes back, or you cannot find your desired memory location, try 
using 4 byte floats. 

Strings can have multiple sizes too. In ancient days of computer science (before the mid 
1990s), computers used ASCII codes, and extended ASCII codes, to store characters. 
Each character was stored in one byte of memory. Today, because computers commu-
nicate in multiple languages, and therefore have more than 256 letters/digits/symbols, a 
new standard had to be created. Itʼs called Unicode. Strings in programs may be stored 
in both sets within the same program, so good luck figuring out which one is best for 
your search. I suggest you try Unicode first, and if you canʼt find what you want, try the 
ASCII. 

Page 3 of 5



How to Search and Replace:

So, youʼve entered a value and selected a type. Now you click the Search button. The 
search button will magically become a Reset button, and iHaxGamez will begin search-
ing the memory of your Process. When completed, the Search Results pane will contain 
a list of all memory addresses that have the value you were looking for. This list will 
probably be longer than you expected. How do you know which address is the one 
youʼre looking for? 

The short answer is, you wait until the value changes. Then you Search through all the 
original addresses, that contained your original value, for the new value. This is a proc-
ess of elimination. After a few iterations, you should have found your address. If two or 
three addresses are left, after two or three iterations, you probably need to change all 
the addresses to your new value. This happens because the programmer decided that 
the value is needed by multiple parts of the program. 

Hereʼs an example: You start a game with 20,000 coins. You pause your game and run 
iHaxGamez. Now you search for a 4 byte integer containing the value 20000. When the 
search completes, the window will contain a large list of addresses that contained the 
value, 20000. Now, you go back to your game and spend 25 coins. Then, pause your 
game, and return to iHaxGamez. Enter 19975 in the Current Value field, and click 
Search. iHaxGamez will look at only the addresses found previously. When the list has 
an address that does not contain your new value, the address is removed from the list. 
In theory, you will have a much shorter list. Repeat this process as needed. Once youʼre 
down to one or two memory addresses that always change to your new amount, you 
can start changing values. 

How To Change a Value:

Double-click on the value in the list, and it will be in edit mode. Type the new value and 
hit the Return key. Presto: youʼre RICH!!! (NOTE: Donʼt forget about the maximum val-
ues for 1 Byte, 2 Byte and 4 Byte Integers as explained above. Entering larger numbers 
may give you negative amounts in your game.) 

Thereʼs one thing to keep in mind when working with strings. Because I believe in 
safety, when replacing strings, the replacement string CANNOT be longer than the 
original search string. Attempts to place a longer string into the listʼs value will result in a 
truncated version of your new string being stored. I considered this necessary because 
if you write to memory beyond the limits of the string length, you could corrupt the pro-
gram, and who knows what could happen next. I know what youʼre thinking: “iHax-
Gamez is inherently dangerous because itʼs writing to memory that it does not control, 

Page 4 of 5



and that is evil!” This is True, but I try to stay away from buffer overflows. If you donʼt like 
it, edit the source code, and recompile your own version. 

About Flash games:

Most of the questions I get involve hacking Flash based games. I decided to throw a few 
facts together to help you along. First of all, Flash often (NOT ALWAYS, JUST OFTEN) 
stores its values as eight times the actual integer amount. So, if youʼre looking for the 
value, 5, you used to have to search for 40. When you wanted to replace that value, you 
used to have to enter eight times the replacement value (IE: 800 to store the value 100).

With version 1.6.1 of iHaxGamez, there is a check box under the initial search value 
that says, “Flash x8 Mode”. If this is checked, the multiplication is done for you.

My second fact concerning Flash is something I learned when I upgraded to OS X 10.6, 
Snow Leopard. When Flash based applications run, the process you must connect to is 
NOT Safari. In the past you would connect to the web browser that you were using to 
access the Flash application. However, Safari now uses another process called “Web-
KitPluginHost”. I believe this was done to protect the OS from “evil” Flash applications. It 
puts the Flash application in a cage that is harder to get out of than just a web browser. 
Keep this in mind when you are trying to hack your next flash game. 

 

Page 5 of 5


