

 F-Script Guide

Documentation for the F-Script language

Copyright 1998-2010 Philippe Mougin. Revised May 09, 2010.
This manual may be freely redistributed.

 2

CONTENTS
1	
 INTRODUCTION..5	

2	
 SOFTWARE ARCHITECTURE: THE F-SCRIPT SOLUTION..6	

3	
 USING THE F-SCRIPT ENVIRONMENT..7	

4	
 BASIC CONCEPTS...8	

4.1	
 LITERAL NOTATIONS..8	

4.2	
 SENDING MESSAGES..8	

4.3	
 PRIORITY AND PARENTHESES ..9	

4.4	
 VARIABLES AND A STUDY OF AN EXPRESSION EVALUATION...10	

4.5	
 EXPRESSION LIST..10	

4.6	
 COMMENTS...10	

4.7	
 CASCADES ..11	

5	
 DIRECT ACCESS TO COCOA ..11	

5.1	
 EXAMPLE: DRAWING ..11	

5.2	
 EXAMPLE: PLAYING A SOUND ..11	

5.3	
 EXAMPLE: OPENING A WINDOW ..11	

5.4	
 EXAMPLE: A LITTLE GRAPHICAL ANIMATION..12	

6	
 GRAPHICAL OBJECT BROWSER...12	

7	
 STANDARD IO STREAMS...12	

8	
 INTRODUCTION TO BASIC DATA TYPES...13	

8.1	
 NUMBERS..13	

8.2	
 STRINGS..13	

8.3	
 ARRAYS ..14	

8.4	
 BOOLEANS..15	

8.5	
 BLOCKS...15	

8.6	
 RANGES, POINTS, RECTANGLES AND SIZES...16	

8.6.1	
 Ranges...16	

8.6.2	
 Points ..16	

8.6.3	
 Rectangles...17	

8.6.4	
 Sizes...17	

9	
 CONTROL STRUCTURES...18	

9.1	
 CONDITIONAL...18	

9.2	
 LOOP ...18	

10	
 PERSISTENCE ..19	

11	
 CUSTOM CLASSES INTEGRATION ...19	

12	
 OBJECT IDENTITY AND EQUALITY...20	

13	
 OBJECT DUPLICATION..20	

14	
 EXCEPTIONS ..20	

15	
 OBJECTIVE-C MAPPING ...21	

15.1	
 OPERATORS ..21	

15.2	
 NON OBJECT TYPES..22	

15.3	
 THE NIL OBJECT..23	

15.4	
 EXCEPTIONS ...23	

15.5	
 SYMBOLIC CONSTANTS ...23	

 3

16	
 MEMORY MANAGEMENT..24	

17	
 ADVANCED MESSAGING : MESSAGING PATTERNS...25	

17.1	
 INTRODUCTION TO MESSAGING PATTERNS..25	

17.2	
 ADVANCED MESSAGING PATTERNS ..28	

18	
 REDUCTION..30	

18.1	
 INTRODUCTION...30	

18.2	
 EXAMPLES OF USE..30	

18.2.1	
 Maximum Reduction: Looking for the Largest..30	

18.2.2	
 Minimum Reduction: Looking for the Smallest ...30	

18.2.3	
 OR Reduction: Looking for “Any”...30	

18.2.4	
 AND Reduction: Looking for “All”..31	

18.2.5	
 Example Using the Sum of Products: Prices Times Quantity Ordered ...31	

18.2.6	
 Example: The Area Under a Curve ..32	

18.2.7	
 Array Analysis..32	

18.2.8	
 Example Using an array of arrays ...33	

19	
 ADVANCED INDEXING...35	

19.1	
 COMPRESSION: SELECTING SOME ELEMENTS FROM AN ARRAY AND OMITTING OTHERS...35	

19.2	
 INDEXING BY AN ARRAY OF INTEGERS...36	

19.3	
 INDEXING ARRAYS OF ARRAYS..36	

20	
 OTHER INTERESTING MESSAGES..38	

20.1	
 IOTA ..38	

20.2	
 SET MANIPULATION ..38	

20.3	
 FINDING THE INDEX OF AN OBJECT WITHIN AN ARRAY..39	

20.3.1	
 Finding Several Indices at Once...39	

20.3.2	
 Looking for the index of an Object that isn’t there ..40	

20.4	
 SORTING ...40	

21	
 SMALLTALK COLLECTION PROTOCOLS & F-SCRIPT..41	

21.1	
 DO: ..41	

21.2	
 WITH:DO: ..41	

21.3	
 COLLECT: ..41	

21.4	
 SELECT:...42	

21.5	
 REJECT: ...42	

21.6	
 ALLSATISFY:...42	

21.7	
 ANYSATISFY:..42	

21.8	
 INJECT:INTO:...43	

21.9	
 ASSORTEDCOLLECTION:..43	

22	
 OTHER NOTES...44	

22.1	
 THE LATENT OBJECT ..44	

23	
 GUIDELINES FOR IMPLEMENTING USER OBJECTS ..44	

24	
 F-SCRIPT IN ACTION: THE FLYING TUTORIAL..46	

24.1	
 OBJECT MODEL..46	

24.2	
 VISUALIZATION..47	

24.3	
 QUERYING ..47	

25	
 GUI TUTORIAL ..50	

26	
 PUZZLE...50	

27	
 QUESTIONS & ANSWERS ..52	

28	
 FSARRAY..54	

 4

29	
 FSASSOCIATION ...55	

30	
 FSBLOCK..58	

31	
 FSBOOLEAN..67	

32	
 FSGENERICPOINTER..71	

33	
 FSNSARRAY ..73	

34	
 FSNSATTRIBUTEDSTRING...81	

35	
 FSNSDATE..82	

36	
 FSNSDICTIONARY..84	

37	
 FSNSFONT..86	

38	
 FSNSIMAGE...87	

39	
 FSNSMANAGEDOBJECTCONTEXT...88	

40	
 FSNSMUTABLEARRAY ..89	

41	
 FSNSMUTABLEDICTIONARY..92	

42	
 FSNSMUTABLESTRING..93	

43	
 FSNSNUMBER...94	

44	
 FSNSOBJECT ..106	

45	
 FSNSSTRING ...109	

46	
 FSNSVALUE...114	

47	
 FSNUMBER..118	

48	
 FSOBJECTPOINTER ..119	

49	
 FSPOINTER..120	

50	
 FSSYSTEM ...124	

51	
 FSVOID..128	

52	
 FSNUMBER..129	

53	
 FSCRIPTMENUITEM ...131	

54	
 FSINTERPRETER ..132	

55	
 FSINTERPRETERRESULT...135	

56	
 FSINTERPRETERVIEW ..137	

57	
 F-SCRIPT FUNCTIONS ..139	

 5

1 INTRODUCTION

F-Script is a lightweight scripting and interactive environment for the Mac OS X object system
(i.e., Cocoa). It provides sophisticated tools (interpreter and object browsers) for introspecting and
manipulating objects. You can also define your own classes dynamically.

The syntax of F-Script is based on Smalltalk. The object model is the native Mac OS X object
model.

It would be wise to read this documentation in front of an F-Script interpreter, and to interactively
experiment and explore the F-Script concepts this text introduces.

Special Note from the author

The F-Script language shares some features with Smalltalk, Self and APL. Some parts of this document are directly adapted from
the wonderful APL 360 Primer by Paul Berry, IBM Corporation. Some parts are also directly inspired by:

- Inside Smalltalk, Volume 1. Wif R. Lalonde / John R. Pugh. Prentice Hall

- The SELF 4.0 Programmer’s Reference Manual, Agesen / Bak / Chambers / Chang / Hölzle / Maloney / Smith / Ungar / Wolczko.
Sun Microsystem

- NCITS J20 DRAFT of ANSI Smalltalk Standard revision 1.9

Some examples are inspired by Les APL étendus, Bernard Legrand. Masson.

 6

2 Software Architecture: The F-Script Solution

USER

Object-Oriented
Interpreter

(Scripting Language)

Other Generic Object-
Oriented Interfaces

(Browsers, menus etc.)

Specific Interfaces
Provided by the Objects

(Specific inspectors,
views etc.)

Scripts

Predefined Classes and Objects

Number String Array Block etc …

Custom Classes and Objects

…

Object Run-time

Persistence

Distribution

…

Object Oriented User Interface

User Objects

Object Model/ System

 7

3 Using the F-Script Environment

The standard F-Script package contains an application called “F-Script.app”. This application is an interactive
interface with the F-Script interpreter. It includes a command line interface and a graphical object browser.

The command line interface displays a window, which prompts you to enter commands. After you have
entered a command, you hit the Return key to execute it. The window then displays the result of your
command. For example, try typing “3+4” and hit the Return key. You should see this:

> 3 + 4
7

The user interface keeps a history of the command you entered. In addition, some special keystrokes allow
you to control the interface:

Key combination Action
[Control +] up arrow Get previous command in history
[Control +] down arrow Get next command in history
Control + right arrow Go to end of current command
Control + left arrow Go to beginning of current command
Control + BackSpace Delete the current command
Control + Return New line
Control + slash Go to next argument placeholder
F5 or option + Escape Code completion
F7 Switch the paste parsing modes (i.e.

determine if a new line is considered
as a command separator when
pasting commands)

F8 Parenthesizing

The completion mechanism is aware of class names, Cocoa constants and method selectors. Class names
and method selectors are automatically added to this list when new bundles are loaded.

To launch the graphical object browser, select “Open Object Browser” in the Workspace menu.

 8

4 BASIC CONCEPTS

4.1 Literal notations

A literal expression, when evaluated, produces an object.
Examples of literal expressions:

 1 is an NSNumber object
-3.14 is an NSNumber object
1.23e-2 is an NSNumber object

'hello' is an NSString object

true is an FSBoolean object
false is an FSBoolean object

{1, 2, 'bill'} is an FSArray object (a subclass of NSMutableArray)

#{'one'->1, 'two'->2} is an NSMutableDictionary object

[:a :b| a + b] is an FSBlock object
#+ is an FSBlock object in compact form

nil is the nil object

4.2 Sending Messages

In F-Script, you manipulate objects by sending them messages (i.e. invoking methods). Message
expressions in F-Script are similar to those in Smalltalk and describe the receiver of the message,
the operation being selected, and any arguments required to carry out the requested operation.
The components of the message expression are called the receiver, the selector, and the
arguments respectively.

Examples of message sending:

5 sin The unary message "sin" is sent to a number object with a value

of 5 (the receiver). A number object with value of
-0.95892427466313845 is returned.

2+4 The binary message "+" is sent to a number object with a value of

2 with one argument, a number object with a value of 4. A number
object with a value of 6 is returned.

35 between:0 and:100 The keyword message "between:and:" is sent to a number

object with a value of 35, with two number objects as arguments
whose values are 0 and 100. The FSBoolean object "true" is
returned.

 9

As shown in the above example, F-Script supports three primitive types of messages, known as
unary, binary and keyword messages:

 - Unary messages have no arguments, only a receiver and a selector.

 - Binary messages, in addition to the receiver have a single argument. Their selector is
formed by a list of special characters. A binary message selector is a combination of the
following characters: + - * / = > < ~ ? % ! & | \. Sometimes a binary selector is
called an operator.

 - Keyword messages contain one or more keywords, with each keyword having a single

argument associated with it. The names of the keywords always end in a colon (:). The
colon is part of the name – it is not a special terminator.

Invoking a method on an object that does not implement it will stop the execution of your
instruction and yield an error. Here is an example:

> 3 unrealMethod

error: an instance of FSNumber does not respond to "unrealMethod"

4.3 Priority and parentheses

The receiver or argument of a message expression may itself be a message expression. This
gives rise to complex message expression and the need for an evaluation order. For example,
the following message expression contains unary, binary and keyword messages.

4 sin between:2*3 and:100

Many languages, C included, base the evaluation of expressions on priorities assigned to
different operators. For instance, multiplication (*) is usually assigned a higher priority than
addition (+). F-Script’s evaluation rules (which are the same in Smalltalk) however, are based on
the type of message (unary, binary, and keyword) involved in the expression. In order of
application, the evaluation order is as follows:

1) Parenthesized expressions

2) Unary expression (evaluated from left to right)

3) Binary expressions (evaluated from left to right)

4) Keyword expression

Note: all binary operators have the same priority level.

Fully parenthesizing a message expression removes all ambiguity about the evaluation order.
Each of the following examples is shown with its fully parenthesized form to illustrate the order of
evaluation.

 Expression Fully Parenthesized Expression

2 sin negated (2 sin) negated
3 + 4 * 6 + 3 ((3 + 4) * 6) + 3
15 max: 32 / 3 15 max: (32 / 3)
2 sin + 4 (2 sin) + 4
5 between: 1 and: 3 sin + 4 5 between: 1 and: ((3sin) + 4)
4 sin max: 4 * 6 (4 sin) max: (4*6)

 10

4.4 Variables and a study of an expression evaluation

Variable names in F-Script are simple identifiers consisting of a sequence of letters, digits and
underscores (_), beginning with a letter or an underscore. All variables are object references. The
assignment expression is denoted by the ":=" construct. The expression "x := 4" binds a
number object with a value of 4 to the target variable. Note that the value of an assignment
expression is the value that is assigned to its target variable The subsequent expression "x" will
evaluate to that number. The subsequent instruction "x := x + 1" is evaluated as follows:

1) The sub-expression “x” (from the right part of the assignment) evaluates and returns the

number object with a value of 4 that was bound to x.

2) The sub-expression "1" evaluates: this generates and returns a number object with a value
of 1.

3) The binary method "+" is invoked on the number object returned by step 1 with the number
object returned by step 2 as the argument. The class representing numbers is an Objective-
C class, so the method "+" is implemented in Objective-C (Objective-C does not permit
symbols like "+" to be used as method names, so F-Script automatically performs mapping
and in fact invokes the method "operator_plus:"). This method generates and returns a
number object with a value of 5.

4) The assignment is made: x is bound to the number object returned by step 3.

5) The number object returned by step 3 is returned as the value of the assignment expression.

You can assign an object to almost any name you like. But if you attempt to display or make use
of a variable before any object has been assigned to it, the interpreter will be unable to supply an
associated object, and won't proceed with the execution of your instruction. It reports the trouble
by yielding an error with a message in the form of “error: undefined identifier xxx”.

To get a list of user-defined identifiers in your workspace, send the identifiers message to
the predefined object sys.

4.5 Expression list

Multiple expressions can be strung together by using the dot (.) separator. This creates an
expression list. An expression list evaluates to the result of the evaluation of the last expression in
the list. For example: "x := 3. y:= 5. x+y" evaluates to 8. The “.” symbol is also referred as
the “instruction separator”.

4.6 Comments

Comments are delimited by double quotes:

"this is a comment"

 11

4.7 Cascades

A cascade is a sequence of message sends that are all directed to the same object. Only the first
in such a sequence has an explicit receiver specified. The receiver of the subsequent messages
is the same object as the receiver of the initial message in the sequence. Otherwise, each
message send occurs as if it was a normal message send that was not part of a cascade. The
result object of each message in the cascade except the right-most message is discarded. The
result of a cascade is the value of its right-most message. Messages that form the cascade are
separated by “;”.

Example:

> myArray := {}

> myArray add:99; add:100; add:101; count
3

> myArray
{99, 100, 101}

5 Direct access to Cocoa

F-Script gives you direct access to Cocoa APIs.

5.1 Example: drawing

In this example, we use the Cocoa graphic API to draw a blue circle.

Set the current color:

> NSColor blueColor set

Draw a circle:

> (NSBezierPath bezierPathWithOvalInRect:(500<>300 extent:100<>100)) stroke

5.2 Example: playing a sound

In this example, we use the Cocoa NSSound class to play a sound:

> (NSSound soundNamed:'Submarine') play

5.3 Example: opening a Window

Creates a NSWindow:

> w := NSWindow alloc initWithContentRect:(100<>100 extent:300<>300)
styleMask:NSTitledWindowMask+NSClosableWindowMask backing:NSBackingStoreBuffered defer:false

Now, to put it on screen:

> w orderFront:nil

Setting its title is easy:

> w setTitle:'this is a nice title'

 12

Playing with transparency:

> w setAlphaValue:0.5

5.4 Example: a little graphical animation

In this example, we use the Cocoa graphical API to produce a little graphical animation:

keyWindow := NSApplication sharedApplication keyWindow.
NSBezierPath setDefaultLineWidth:20.
keyWindow contentView lockFocus.

1 to:550 by:4 do:
[:x|
 path := NSBezierPath bezierPathWithOvalInRect:(x<>130 extent:200-(x/3)<>(x/2)).
 (NSColor colorWithDeviceRed:x/570 green:0.1 blue:1-(x/570) alpha:1) set.
 path stroke.
 keyWindow flushWindow.
 NSColor whiteColor set.
 path setLineWidth:path lineWidth + 2.
 path stroke.
].

keyWindow contentView unlockFocus.
keyWindow display.

6 Graphical Object Browser

F-Script provides a powerful tool to graphically interact with objects. The F-Script object browser can be
opened using the browse and browse: methods of the FSSystem class (a special instance of
FSSystem, representing the current F-Script interpreter, is predefined in the workspace of interactive
sessions. Its name is “sys”). For instance, to open an object browser on the number 99, you will type:
sys browse:99

From the F-Script application, you can also open the object browser by selecting “Open Object
Browser” in the Workspace menu.

7 Standard IO streams

Three global objects named stdin, stdout and stderr, give access to the standard IO streams.
These objects inherit from the NSFileHandle class. In addition stdout and stderr provide a
convenience method for outputting a string: -(void) print:(NSString *)string. For example:

stdout print:'hello world'

 13

8 Introduction to Basic Data Types

This section introduces some features of the basic F-Script data types.

8.1 Numbers

Numbers in F-Script are standards NSNumber objects. FSNSNumber, a category of NSNumber,
provides classical mathematical operations (+, -, *, /) and comparison functions (>, >=, <, <=).
Equality is tested with the = method, inequality with the ~= method. Also provided are some
mathematical functions, such as abs, sin, cos, ln, sqrt, etc. Methods provided by F-Script for
dealing with numbers work in double precision.

You can get the larger of two numbers with the max: method, and the smaller with the min: method.
For example:

> 5 max:100
100

> 5 min:100
5

You can get the floor and ceiling of a number:

> 5.7 ceiling
6

> 5.7 floor
5

8.2 Strings

Strings in F-Script are standard NSString and NSMutableString objects. In addition to the Cocoa string
methods, F-Script adds support for the classical comparison operators and several manipulation
functions. These methods are defined in categories of NSString and NSMutableString: FSNSString and
FSNSMutableString.

Example:

> 'aaa' < 'abc'" "comparing"
true

> 'oliver' at:2 "indexing"
'i'

> 'oliver' length "getting the length"
6

> 'oliver' reverse "reversing"
'revilo'

> 'Dear ' ++ 'oliver' "concatenating"
'Dear oliver'

The literal notation returns an immutable NSString.

 14

8.3 Arrays

Arrays in F-Script are NSArray and NSMutableArray objects. Array objects are very important in F-
Script because they support several advanced data manipulation features. These features are
described in their own section of this guide. FSNSArray, a category of NSArray, and
FSNSMutableArray, a category of NSMutableArray, add a number of methods for array manipulation.

The literal notation returns a mutable array.

Basic features of arrays include indexing (start with 0), inserting elements and removing elements. For
example:

> {1,2,3,'oliver',5*5} "evaluating an array literal"
{1, 2, 3, 'oliver', 25}

> {1,2,3,4} count "getting the size"

4

> {2,4,6,8} at:2 "indexing"
6

> {2,4,6,8} at:4 "invalid indexing"
error: index of an array must be a number less than the size of the array

> myArray := {1,2,3,4}
> myArray insert:'hello' at:2 "inserting"
> myArray
{1, 2, 'hello', 3, 4}

> myArray removeAt:1 "removing"
> myArray
{1, 'hello', 3, 4}

> myArray at:0 put:100 "replacing"
> myArray
{100, 'hello', 3, 4}

> {{1,2,3}, {10,11}} "an array of array"
{{1,2,3}, {10,11}}

> {1,2,3} ++ {10,20} "concatenating"
{1, 2, 3, 10, 20}

Note: Since arrays are represented by NSArray and NSMutableArray, you can also use the standard Cocoa methods for
manipulating arrays in F-Script. However, as you will learn in this guide, F-Script is an array language and the methods
shown in the examples above provide additional power when dealing with arrays. For instance, the at: method, shown
above for indexing an array, lets you specify a whole array of indices instead of just one integer.

 15

8.4 Booleans

Boolean objects (that you can enter as true, false, YES and NO) are represented by the class
FSBoolean. They provides the classical Boolean operations: the AND operation is provided by the
binary method &, the OR operation by the binary method |, the NOT operation by the unary method
not. For example:

> true & false
false

> true | false
true

> false not
true

Booleans, along with Blocks also support control structure with methods ifTrue: and
ifTrue:ifFalse:

"true" and "YES" both evaluate to the true value.
"false" and "NO" both evaluate to the false value.

8.5 Blocks

A block is an object that contains some F-Script code. Generally, you create a block by bracketing a
segment of code. For example: [x := x +1] is a block. You can execute the code inside this block
by sending it a value message. For example:

> x := 1 "assigning 1 to x"

> x "evaluating x"
1 "x is 1"

> myBlock := [x := x + 1] "assigning the block [x := x + 1] to myBlock"

> x "evaluating x"
1 "x is the same"

> myBlock value "executing the block"

> x "evaluating x"
2 "x has changed"

A block may have parameters. For example [:a :b | a + b] is a block with two parameters
named a and b. When executing it you have to supply the value for the arguments, using the relevant
value… message. For example:

> myBlock := [:a :b| a + b]
> myBlock value:3 value:4
7

Blocks may also have local variables and bindings to other objects. They can be executed recursively.
Below is an example of a block with two arguments and one local variable:

> [:a :b| |local| local := a + b. local * 2] value:3 value:4
14

A block that just sends a single message to its first argument with its other arguments as arguments to
the message, may be represented using the compact notation for block literal. This notation represents
a block by a “#“ immediately followed by the message selector the block has to use when it is executed.
For example, the block [:a :b| a + b] may also be represented in a compact form with #+ :

> #+ value:3 value:4

7

A block can be edited in a specific inspector by sending it the inspect message.

 16

8.6 Ranges, points, rectangles and sizes

A number of Cocoa APIs take or return values of types NSRange, NSPoint, NSRect and NSSize.
Because these types are defined as C structs, they can’t be manipulated directly from F-Script, which
deals only with objects. However, Cocoa’s NSValue class provides support for wrapping values of
these types into objects. F-Script leverages this support by automatically wrapping and unwrapping
values of these types when invoking methods. This let you invoke methods taking or returning
NSRange, NSPoint, NSRect or NSSize values from F-Script.

F-Script also adds a few convenience methods to NSValue (with the FSNSValue category) and to
NSNumber (with the FSNSNumber category) to deal with ranges, points, rectangles and sizes.

8.6.1 Ranges

From F-Script, you can create an NSValue containing an NSRange by invoking the class method
rangeWithLocation:length: defined on NSValue by the FSNSValue category. You can ask a
range for its location and length. For example:

> myRange := NSValue rangeWithLocation:10 length:5 "generating and assigning a range to
the variable myRange"

> myRange "evaluating myRange"
(Range location=10 length=5)

> myRange location "asking for the location"
10

> myRange length "asking for the length"
5

> myRange = (NSValue rangeWithLocation:10 length:5) "comparing myRange with another
range."
true

8.6.2 Points

From F-Script, you can create an NSValue containing an NSPoint by invoking the <> method on a
number, with another number for argument. This method generates and returns a point whose x-
coordinate is equal to the value of the receiver and whose y-coordinate is equal to the value of the
argument. You can ask a point for its x and y coordinates with the messages x and y. For example:

> myPoint := 100<>150 "generating and assigning a point to the variable myPoint"

> myPoint "evaluating myPoint"
(100<>150)

> myPoint x "asking for the x coordinate"
100

> myPoint y "asking for the y coordinate"
150

> myPoint = (100<>150) "comparing myPoint with another point. Parenthesis must be

 used, otherwise the expression will be interpreted as
 (myPoint = 100) <> 150"

true

Note: In Smalltalk, points are traditionally created using the @ operator instead of the <> operator (that is, you type
100@150 instead of 100<>150). However, in F-Script, the @ symbol is used for specifying messaging patterns and can’t
be used as an operator.

 17

8.6.3 Rectangles

From F-Script, you can create an NSValue containing an NSRect by invoking the extent: or the
corner: method on an NSValue containing an NSPoint, with another point as argument. The
extent: method generates and returns a rectangle whose origin is the receiver and whose width and
height are provided by the argument. The corner: method generates and returns a rectangle whose
origin is the receiver and whose opposite corner is the argument. You can ask a rectangle for its
extent (a point defined by the width and the height of the rectangle), its origin (a point representing
the origin of the rectangle) and its corner (a point representing the corner at the opposite of the
origin). For example:

> myRect := 100<>150 extent:20<>20 "generating and assigning a rectangle to the
variable myRect"

> myRect2 := 100<>150 corner:120<>170 "generating and assigning a rectangle to the

variable myRect2"

> myRect "evaluating myRect"
(100<>150 extent:20<>20)

> myRect extent "asking for the extent"
(20<>20)

> myRect corner "asking for the corner"
(120<>170)

> myRect origin "asking for the origin"
(100<>150)

> myRect = myRect2 "comparing myRect with myRect2"
true

8.6.4 Sizes

From F-Script, you can create an NSValue containing an NSSize by invoking the class method
sizeWithWidth:height: defined on NSValue by the FSNSValue category. You can ask a size for
its width and height. For example:

> mySize := NSValue sizeWithWidth:20 height:30 "generating and assigning a size to
the variable mySize"

> mySize "evaluating mySize"
(Size width=20 height=30)

> mySize width "asking for the width"
20

> mySize height "asking for the height"
30

> mySize = (NSValue sizeWithWidth:20 height:30) "comparing mySize with another size"
true

 18

9 Control Structures

Unlike many languages, no additional syntactic structures need to be added to describe the
conventional conditional and repetitive control structures. In F-Script, these control structures are
implemented in terms of objects and message passing. In particular, block and Boolean objects provide
the required support. Note that F-Script also provides some higher-level control structures than those
presented in this section; in fact, explicit if and while type structures are much less used in F-Script than
in other languages.

9.1 Conditional

The conditional selection is expressed by sending the message ifTrue:ifFalse: to a Boolean
with, typically, two blocks as argument. The Boolean will respond to the message by evaluating the
appropriate argument block. If the Boolean is true, it will evaluate the first block and ignore the
second. On the other hand if the Boolean is false, it will evaluate the second block and ignore the
first. Finally, the result of the evaluation of the selected block is returned.

Below is a comparison of F-Script code and C code for the conditional:

 F-Script C

number1 < number2 ifTrue:
[
 maximum := number2.
 minimum := number1.
]
ifFalse:
[
 maximum := number1.
 minimum := number2.
]

if (number1 < number2)
{
 maximum = number2;
 minimum = number1;
}
else
{
 maximum = number1;
 minimum = number2;
}

Boolean objects true and false also accept the single keyword message ifTrue:. The Boolean
true responds to this message by returning the value of the block argument; false responds by
returning the special object nil. There are also methods ifFalse: and ifFalse:ifTrue:

9.2 Loop

F-Script provides a conditional repetition equivalent to the C while statement. It is again based on
blocks and makes use of the fact that blocks are objects and thus can support their own message
protocol. Consider the following program fragments to compute the sum of the first 100 integers:

 F-Script C

sum := 0.
number := 1.
[number <= 100] whileTrue:
[
 sum := sum + number.
 number := number + 1.
]

sum = 0;
number = 1;
while (number <= 100)
{
 sum = sum + number;
 number = number + 1;
}

The block that receives the whileTrue: message repeatedly evaluates itself and, if the termination
condition is not yet met, evaluates the argument block. The whileTrue (without argument),
whileFalse and whileFalse: methods also exist.

 19

F-Script also provide something like the for statement in the form of the to:do: and to:by:do:
methods provided by the FSNSNumber category (a category of NSNumber).

 F-Script C

sum := 0.
1 to:100 do:
[:i|
 sum := sum + i.
]

sum = 0;
for (i = 1; i <= 100; i++)
{
 sum = sum + i;
}

10 Persistence

Objects can be saved in files using the save: or save messages:

> myObject save:'myFile' "save myObject to the specified file"

> myObject save "open a file browser and save to the chosen file"

You load an object by sending the load: or load message to the predefined object sys.

> myObject := sys load:'myFile' "load the object stored in the file"

> myObject := sys load "open a file browser and load the chosen file"

F-Script uses NSArchiver to save objects. So, objects to be saved must conform to the standard Cocoa NSCoding protocol.
Files generated are standard NSArchiver files; you can use them with other applications to load archived objects using the
Cocoa NSUnarchiver API.

11 Custom Classes Integration

F-Script can automatically integrate your custom classes. All you have to do is to put a bundle containing
your classes in the F-Script repository. This repository is created by the F-Script.app application when
you launch it for the first time. By default it will be "~/Library/Application Support/F-Script" (where ~ stands
for your home directory). You put your bundles (which can be whole frameworks) in the
"~/Library/Application Support/F-Script/classes" directory.

At launch time, an F-Script interpreter automatically links up to these bundles. You can put as many
bundles as you want in the class repository.

Of course, you can also use the standard Cocoa methods to dynamically load classes. For instance, the
following F-Script instruction will dynamically load the GLUT framework (an OpenGL utility toolkit)
provided by Apple:

(NSBundle bundleWithPath:'/System/Library/Frameworks/GLUT.framework') load

Frameworks requiring 64 bits execution must be loaded in F-Script running in 64 bits (the default on 64
bits hardware). For 32 bits frameworks, you must launch F-Script in 32 bits mode. You do that like with
any other applications: open the Finder inspector on F-Script.app and check "open in 32 bits mode".
Some frameworks require running with automatic garbage collection while some other require running in
reference counting mode. You can configure F-Script.app to execute in the correct mode in the
preference panel of F-Script.

 20

12 Object identity and equality

Identity can be tested with the == and ~~ methods. The == method responds true if the receiver and the
argument are the same object in memory, false otherwise. The ~~ method responds true if the receiver
and the argument are not the same object in memory, false otherwise. Since these methods are defined
in FSNSObject, a category of NSObject, they can be used with all objects.

Equality is defined in Cocoa by the isEqual: method. This is the method you use in F-Script. For
convenience, some classes and categories provided by F-Script also implements = and ~= methods to
test for equality and inequality, as defined by isEqual:. These = and ~= methods are provided for
classes such as NSNumber, NSString, NSDate, NSValue, FSBoolean, FSPointer, FSBlock…

As you can implement isEqual: in your own classes, you can also implement = and ~=.

13 Object duplication

The setValue: message sets the value of the receiver to that of the argument. Usually, the receiver
and the argument are to be of the same class.

Most of the built-in F-Script classes implement the setValue: method.

14 Exceptions

F-Script uses the Objective-C exception model, and let you raise and handle exceptions. To define an F-
Script exception handler, you use the onException: method of class FSBlock. This method takes a
block as argument (the exception handler). The method evaluates the receiver and, if an exception is
raised across the receiver, the handler is evaluated. If the handler declares that is has an argument, then
it is given the actual exception as the argument.

General notation:

[block that may raise an exception] onException: [:exception| exception handler code]

Example:

"Will play a beep and log the exception raised by the division by zero"

[1/0] onException:[:e| sys beep. stdout print:e description]

To explicitly raise an exception, you can use the NSException API. Example:

(NSException exceptionWithName:'MyException' reason:'testing' userInfo:nil) raise

 21

15 Objective-C mapping

F-Script is based on the Objective-C object model. However, in some situations, mapping must occur
between F-Script and Objective-C.

15.1 Operators

Objective-C does not support non-alphabetical symbols as method selectors. When such a selector is
used in F-Script, mapping takes place in order to produce an alphabetical selector. Each non-
alphabetical symbol that can be used to form a selector name has an alphabetical name, given in the
following table. This alphabetical name is used to produce the alphabetical Objective-C selector.

Symbol Alphabetical Name
 +
 -
 <
 >
 =
 *
 /
 ?
 ~
 !
 %
 &
 |
 \

 plus
 hyphen
 less
 greater
 equal
 asterisk
 slash
 question
 tilde
 exclam
 percent
 ampersand
 bar
 backslash

The mapping works by appending the names of the symbols, using "_" as a separator. The Objective-C
selector name begins with "operator_" and ends with ":".

Examples:

The operator + is mapped to operator_plus:
The operator - is mapped to operator_hyphen:
The operator ++ is mapped to operator_plus_plus:

 22

15.2 Non Object types

In F-Script, all arguments and return values of messages are objects. Objective-C, however, supports
non-object types in addition to object types. To enable an Objective-C method involving non-object types
to be invoked from F-Script, object arguments may be mapped to non-object arguments, and non-object
return values may be mapped to object return values. This mapping occurs automatically.

Expected argument type is You must provide an
char (this includes BOOL) NSNumber or FSBoolean
unsigned char NSNumber
short NSNumber
unsigned short (this includes unichar) NSNumber or NSString with one character
int NSNumber
unsigned int NSNumber
long NSNumber
unsigned long NSNumber
long long NSNumber
unsigned long long NSNumber
float NSNumber
double NSNumber
_Bool FSBoolean
SEL FSBlock in compact form
NSPoint or CGPoint NSValue containing an NSPoint
NSSize or CGSize NSValue containing an NSSize
NSRect or CGRect NSValue containing an NSRect
NSRange NSValue containing an NSRange
CGAffineTransform NSAffineTransform
pointer (e.g. int *) FSPointer or nil (nil is mapped to NULL)

Return type is In F-Script, you get an
char (this includes BOOL) FSBoolean
unsigned char NSNumber
short NSNumber
unsigned short NSNumber
int NSNumber
unsigned int NSNumber
long NSNumber
unsigned long NSNumber
long long NSNumber
unsigned long long NSNumber
float NSNumber
double NSNumber
_Bool FSBoolean
SEL FSBlock in compact form
NSPoint or CGPoint NSValue containing an NSPoint
NSSize or CGSize NSValue containing an NSSize
NSRect or CGRect NSValue containing an NSRect
NSRange NSValue containing an NSRange
CGAffineTransform NSAffineTransform
pointer (e.g. int *) FSGenericPointer or nil (NULL is mapped

to nil)
void FSVoid

This mapping specification does not cover all Objective-C types. The Objective-C methods that use these
non-covered types for an argument or their return type are not directly callable from F-Script.

 23

15.3 The nil object

The special Objective-C value nil is supported in F-Script. Sending a message to nil from F-Script will
always return nil except for the == and ~~ messages, which allow for checking if the receiver is nil or
not, respectively (see section 12, “Object identity and equality”).

15.4 Exceptions

An Objective-C exception is reported by the interpreter as an F-Script execution error (see the
FSInterpreter and FSInterpreterResult classes) unless it is handled by an exception handler (see section
14).

If the interpreter is used from F-Script.app and an exception is raised and not handled, the execution of
the current command is aborted, and the user is shown a message describing the exception.

15.5 Symbolic Constants

Cocoa defines a number of symbolic constants (e.g. NSNotFound). Most of them are pre-defined in F-
Script and can be used directly.

 24

16 Memory Management

A Cocoa executable can run with automatic garbage collection enabled or, alternatively, using a
manual reference-counting scheme. In either case, F-Script follows the rules of the Cocoa memory
management system of the executable hosting it.

F-Script.app, the standalone version of F-Script, can operate either with automatic garbage collection or
in reference counting mode. Typically, you'll want to use automatic garbage collection, as it frees you
from the limitations and complexities of the reference counting scheme. In some cases, however, you
might want to use the reference counting version. For instance, you might want to load existing classes
that have not been designed to support automatic garbage collection.

In reference counting mode, when you assign an object to a variable, F-Script automatically retains it,
releasing it when you re-assign another object to the variable. There is an exception: when, in a
method of an F-Script class, you assign an object to an instance variable inherited from an Objective-C
class, you must take care of retaining and releasing it by yourself, as you would do in Objective-C.

In reference counting mode, some extra care should be taken to avoid retain cycles when creating
references to block objects. A blocks object maintains a reference to the activation of the enclosing
block or method it was created in. If there is a reference to this block object in this activation, we have a
retain cycle which leads to memory leaks. To avoid such cycles, you must ensure that you remove
such references to blocks when done with them. For instance, the following will leak, as the local
variable “internalBlock” retains an internal block:

[|internalBlock|

 internalBlock := ['hello'].

 ...doSomeStuff...

] value.

To avoid leaking, you must remove the reference to the internal block when done with it; for example,
at the end of the enclosing block (or method):

[|internalBlock|

 internalBlock := ['hello'].

 ...doSomeStuff...

 internalBlock := nil.

] value.

 25

17 Advanced Messaging : Messaging Patterns

17.1 Introduction to Messaging Patterns

Calculations frequently involve not just one object but a whole array of them. F-Script gets much of its
power and simplicity from its approach to the processing of arrays.

With F-Script, the operations that apply to single objects can be applied with equal ease to

the processing of entire arrays.

For instance, if A is an array of four numbers, and B is another array which also consists of four numbers,
then the instruction A+B causes the computer to add the first number in A to the first number in B, and the
second number in A to the second number in B, and so on. Four separate additions are performed, and
so the result is also an array of four numbers.

> A := {1, 2.5, 7, 11}
> B := {10, 20, 30, 40}
> A+B
{11, 22.5, 37, 51}

What is fun is that the same sort of element-by-element parallel processing can be obtained with any
kind of message!

> {1,2,3,4} * {1,2,3,4}
{1, 4, 9, 16}

> {1,2,3,4} max:{-10,20,0,2}
{1, 20, 3, 4}

> {1,2,3,4, 'bar'} > {-10,20,0,2,'foo'}
{true, false, true, true, false}

> {1,2,3,4,5,6} = {-1,2,-3,4,-5,6}
{false, true, false, true, false, true}

> {1,2,3,4} between:{0,1,-5,3} and:{2,2,-2,10}
{true, true, false, true}

What about unary messages?

> {1.2, 1.8, 3.2, 4} floor
{1, 1, 3, 4}

> {'oliver', 'henry', 'bertram'} uppercaseString
{'OLIVER', 'HENRY', 'BERTRAM'}

 26

Not all arguments have to be arrays:

> {1,2,3,4} * 2
{2, 4, 6, 8}

> {1,2,3,4} between:3 and:10
{false, false, true, true}

How it works

This special "do-it-to-all-my-array-elements" process occurs when, from F-Script, an NSArray object is sent an unrecognized
message (i.e. a message not implemented by the class of the object). In this case, the F-Script interpreter generates
messages and sends them to each element of the array. If some arguments are themselves arrays, their elements are also
taken one after the other.

For example, when F-Script executes {1,2,3,4} * 2, it generates and sends four messages: 1 * 2, 2 * 2, 3 *
2 and 4 * 2.

Now, what if you want to send to each element of an array a message recognized by the array? For
example, say you have an array of arrays and you want the size of each sub-array. Just sending the
count message does not work:

> {{1,2,3,4}, {'oliver', 'henry'}, {10,100}} count
3

Here you get the size of the enclosing array, not the size of each element. To force the message to be
dispatched to each element, you have to use special notation that involves typing the “@” symbol before
the message selector:

> {{1,2,3,4}, {'oliver', 'henry'}, {10,100}} @ count
{4, 2, 2}

The “@” notation means that a loop is performed on the array.

But what if you have an array of arrays of arrays and you want to send the message to each sub-sub-
array? In this case you just add one “@” to your message:

> { { {1,2,3,4}, {'oliver', 'henry'}, {10,100} } , { {1945,1968}, {20002} } } @@ count
{{4, 2, 2}, {2, 1}}

You can string as many @ as you want. The leftmost @ is said to be at level 1, the next @ is said to be
at level 2 and so on.

What about arguments? Is there an equivalent special notation to force loops on arguments? Yes –in
the case of arguments, you have to put an @ before the argument. For example, supposing you have two
arrays of strings and you want to concatenate the first string of one array with the first of the other, the
second with the second and so on. You have to explicitly loop on your two arrays or else you will just get
their concatenation because the concatenation operator is the same for arrays and strings:

> {'General ', 'Mr. ', 'Miss ' } @ ++ @ {'Grant', 'Smith', 'Robinson'}
{'General Grant', 'Mr. Smith', 'Miss Robinson'}

 27

Another example where you must use @ on the argument:

> 2 max: @ {0,1,10,20}
{2, 2, 10, 20}

Note that when there is an @ at a given level in a messaging pattern expression, any other loop for the
same level must be explicitly stated. For example:

> {1,2,3} + {10,20,30} “implicit loop on the receiver and the argument
 (because arrays do not respond to +)“

{11, 22, 33}

> {1,2,3} @ + {10,20,30} “explicit loop on the receiver -> no more implicit loop on

 the argument. “
error: argument of method "+" must be a number or a FSBoolean

> {1,2,3} @ + @ {10,20,30} “explicit loop on the receiver and the argument“
{11, 22, 33}

Messaging patterns

The base element in an object-oriented program is message sending. An object-oriented program can be thought as a way to
express what messages are to be sent to what objects. The @ notation gives you the possibility to specify not just one
particular sent message, but an entire set of sent messages. It defines what is called a “multi-messaging pattern” or simply a
“messaging pattern”. The classic message-sending paradigm then becomes a special case in the Messaging pattern world of
F-Script.

We can extract the structural information of a particular messaging pattern expression and represent it:

The pattern of the messaging pattern expression {1,2,3} @ + @ {10,20,30} is @:@

The pattern of the messaging pattern expression 2 max:@ {0,1,10,20} is :@

The pattern of the messaging pattern expression {{1,2,3,4},{'oliver', 'henry' },{10,100}} @ count is @

As you will see in the following chapters, some patterns are frequently used and are even given standard well-known names.

Note that patterns may be implicit:

In {1,2,3} + {10,20,30} we have the implicit pattern @:@

In {1,2,3} between:3 and:10 we have the implicit pattern @::

Explicit loop control structures (while, loop…until, etc) found in classic languages are often replaced with messaging patterns
in F-Script.

 28

In the following example, you can use a messaging pattern to apply a block to each element of an array:

> sum := 0
> [:elem| sum := sum + elem] value: @ {1,2,3}
> sum
6

Note that this is just to give an example of messaging pattern. There is a much better way to sum the
elements of an array, as you will see in the section on the reduction operator.

In this following example, you can now use a messaging pattern to index an array of array. You want to
get the element at index 1 of each sub-array (recall that "at:" is the indexing method):

> {{1,5,3,8}, {'Lisa', 'Homer', 'Bart', 'Marge'}, {{1,4}, {6,7,8}}} @ at:1
{5, 'Homer', {6, 7, 8}}

17.2 Advanced messaging patterns

Up until now, we have seen that by using patterns on some arrays, you can generate messages that use
the first element of each array, then the second and so on. But can you combine an array element in
another way? For example, supposing you have two arrays (A and B) of numbers and you want to
multiply the first element of A with each element of B, then the second element of A with each of the
elements of B and so on. To do this, you have to specify that you want a loop on A and an inner loop on
B. You have to use a number after the @ symbol to state the inner level of each loop:

> {1,2,3} @1 * @2 {10,100,1000,10000}
{{10,100,1000,10000}, {20,200,2000,20000}, {3,300,3000,30000}}

The outer-most loop specifications can be abbreviated by omitting the 1 after @. The above command
and the following are thus equivalent:

> {1,2,3} @ * @2 {10,100,1000,10000}

{{10,100,1000,10000}, {20,200,2000,20000}, {3,300,3000,30000}}

The @1:@2 pattern has a standard name; it is called the outer-product.

Some examples (recall that ++ is the concatenation operator; it works for arrays as well as for strings).
The last example introduces and comments on another capability of the messaging pattern syntax: the
multi-level messaging pattern (a basic example was seen in the previous section).

> {'a1', 'a2', 'a3' } ++ {'b1', 'b2', 'b3', 'b4' } “No pattern“

{'a1','a2','a3','b1','b2','b3','b4'}

> {'a1','a2','a3'} @ ++ @ {'b1','b2','b3','b4'}

{'a1b1','a2b2','a3b3'}

> {'a1','a2','a3'} @1 ++ @2 {'b1','b2','b3','b4'}

{{'a1b1','a1b2','a1b3','a1b4'},
 {'a2b1','a2b2','a2b3','a2b4'},
 {'a3b1','a3b2','a3b3','a3b4'}}

> {'a1','a2','a3'} @2 ++ @1 {'b1','b2','b3','b4'}

{{'a1b1','a2b1','a3b1'},
 {'a1b2','a2b2','a3b2'},
 {'a1b3','a2b3','a3b3'},
 {'a1b4','a2b4','a3b4'}}

> [:a :b| a ++ b] value:{'a1','a2','a3'} value:{'b1','b2','b3','b4'} “No pattern“

{'a1','a2','a3','b1','b2','b3','b4'}

 29

> [:a :b| a ++ b] value:@1{'a1','a2','a3'} value:@2{'b1','b2','b3','b4'}

{{'a1b1','a1b2','a1b3','a1b4'},
 {'a2b1','a2b2','a2b3','a2b4'},
 {'a3b1','a3b2','a3b3','a3b4'}}

> {{'a11','a12','a13'},{'a21','a22','a23'}} ++ {{'b11','b12'},{'b21','b22'}} “No pattern“

{{'a11','a12','a13'}, {'a21','a22','a23'}, {'b11','b12'}, {'b21','b22'}}

> {{'a11','a12','a13'},{'a21','a22','a23'}} @ ++ {{'b11','b12'},{'b21','b22'}}

{{'a11', 'a12', 'a13', {'b11', 'b12'}, {'b21', 'b22'}},
 {'a21', 'a22', 'a23', {'b11', 'b12'}, {'b21', 'b22'}}}

> {{'a11','a12','a13'},{'a21','a22','a23'}} @@ ++ @@ {{'b11','b12'},{'b21','b22'}}

{{'a11b11', 'a12b12'}, {'a21b21', 'a22b22'}}

> {{'a11','a12','a13'},{'a21','a22','a23'}} @1@ ++ @2@ {{'b11','b12'},{'b21','b22'}}

{{{'a11b11', 'a12b12'}, {'a11b21', 'a12b22'}},
 {{'a21b11', 'a22b12'}, {'a21b21', 'a22b22'}}}

> {{'a11','a12','a13'},{'a21','a22','a23'}} @1@2 ++ @2@1 {{'b11','b12'},{'b21','b22'}}

{{{{'a11b11', 'a12b11', 'a13b11'}, {'a11b12', 'a12b12', 'a13b12'}},
 {{'a11b21', 'a12b21', 'a13b21'}, {'a11b22', 'a12b22', 'a13b22'}}},
 {{{'a21b11', 'a22b11', 'a23b11'}, {'a21b12', 'a22b12', 'a23b12'}},
 {{'a21b21', 'a22b21', 'a23b21'}, {'a21b22', 'a22b22', 'a23b22'}}}}

Let's analyze the last example:

The pattern here is @1@2:@2@1.

This pattern has the form ij:kl where i is @1,j is @2,k is @2 and l is @1.

To execute this pattern, F-Script first looks at the first level of the pattern, so it considers i:k,
which is @1:@2. It then applies this first level pattern: it generates the "messages" between the
combinations (described by this pattern) of the elements of the arrays in the message
expression.
These combinations, described by the semantics of the @1:@2 pattern, are:

{'a11','a12','a13'} <----message----> {'b11','b12'} (1)
{'a11','a12','a13'} <----message----> {'b21','b22'} (2)

{'a21','a22','a23'} <----message----> {'b11','b12'} (3)
{'a21','a22','a23'} <----message----> {'b21','b22'} (4)

But what exactly is "<----message---->"?
<----message----> is, in fact, the original messaging pattern expression (more precisely: the part
of the original messaging pattern expression composed by the pattern specification and the
selector) minus the first level pattern.

So <----message----> is @2++@1 (i.e. j:l).

Hence (1) is in fact: {'a11','a12','a13'} @2++@1 {'b11','b12'}
 (2) is in fact: {'a11','a12','a13'} @2++@1 {'b21','b22'}

 (3) is in fact: {'a21','a22','a23'} @2++@1 {'b11','b12'}

 (4) is in fact: {'a21','a22','a23'} @2++@1 {'b21','b22'}

F-Script now executes (1), (2), (3) and (4) and returns an array with the four results of these four
executions. The final result is: {{result of the execution of (1), result of the execution of
(2)}, {result of the execution of (3), result of the execution of (4)}}.

 30

18 Reduction

18.1 Introduction

Arrays implement a very useful message, the \ operator. This operator takes one argument, a block, and
carries out what is called a reduction. Reducing an array consists in cumulatively evaluating a block on
the elements of an array. For example, you add up the elements of an array with this command:

> {1,2,3,4} \ [:a :b| a+b]
10

In this case, you can do even better by using the compact form for the block:

> {1,2,3,4} \ #+
10

The result is computed as if you had entered: 1 + 2 + 3 + 4

18.2 Examples of use

18.2.1 Maximum Reduction: Looking for the Largest

To select the single largest element of an array of numbers, A, you reduce the array by the
maximum operator, as shown below:

A \ #max:

If BALDUE is the array of the balances due for all of the customers of a store,

BALDUE := {62.15, 127, 4.42, 18.65, 814.5, 76.42, 118.50, 6.01}

then BALDUE \ #max: gives the amount owed by the customer who has the biggest bill:

> BALDUE \ #max:
814.5

18.2.2 Minimum Reduction: Looking for the Smallest

In similar fashion, A \ #min: selects the (algebraically) smallest element of an array. For
instance, if ROOT1 contains the vector of all the first roots of a set of equations,

ROOT1 := {0.4815, -0.085236, 16.442, 0.000625, -4, 3.17215}

then ROOT1 \ #min: selects whichever value is the smallest.

> ROOT1 \ #min:
-4

18.2.3 OR Reduction: Looking for “Any”

Suppose you need to know whether a particular value exists anywhere in a long array. Let's say
you want to know if any element of the array A is equal to the single number Q. If you type:

A = Q

then you will have a vector of Booleans indicating for each element of A whether or not it is equal
to Q. You don’t want to examine all these Booleans - you want to reduce them to a single result,
either true or false, by applying the logical OR operation (implemented in F-Script by the |
operator) so that it puts an OR between each of the elements:

 31

false|false|false|false|false|true|false| ... |false|false|true|false|false

Thus, the instruction you need is typed like this:

A = Q \ #|

The result is true if there is a true anywhere in that array; it will be false if − and only if −
every element is false.

Suppose N is an array of integers. You want to know if any of them is a perfect square. If an
element of N is a perfect square, then its square root is an integer. In this case, sending the
fractionPart message to the root will return zero. The following expression tests to see
whether that condition is met by any elements of N :

> N := {103, 117, 142, 121, 135, 176, 149, 169, 128, 156, 118, 124, 133}
> (N raisedTo:0.5) fractionPart = 0 \ #|
true

And if you need to know not just whether any of them are perfect squares, but how many, you can
find out by reducing the expression (N raisedTo:0.5) fractionPart = 0 by + instead of
| (this works because the FSBoolean class implements the + method, so a Boolean can be
added as if true were 1 and false 0):

> (N raisedTo:0.5) fractionPart = 0 \ #+
2

18.2.4 AND Reduction: Looking for “All”

By using the AND reduction you can test whether all elements of an array satisfy a certain
condition.

Suppose you want to know if every one of a set of equations has real roots. The vector of
discriminants for these equations has been stored as the variable DISC (an array). Then

DISC >= 0

is an array of Booleans, indicating for each element of DISC whether it is true that the element is
equal to or greater than 0. The operation AND placed between every element of this Boolean
array will return the result “true” if every element is true, and otherwise “false”. Thus, to find out if
the test is true for every element of DISC, you enter:

DISC >= 0 \ #&

Suppose you have an array, KEY, and another array called LOCK. Both arrays are the same
length. You need to know whether every element of KEY is equal to the corresponding LOCK
element:

> KEY := {1.01, 1.763, 1.808, 1.2346, 1.2272, 1.8095, 1.1}
> LOCK := {1.01, 1.763, 1.898, 1.2346, 1.2272, 1.8095, 1.1}
> KEY = LOCK \ #&
false

Evidently at least one of the elements of KEY does not match an element of LOCK.

18.2.5 Example Using the Sum of Products: Prices Times Quantity Ordered

Suppose that PRICE is a variable which contains the price list for various items sold by a store,
and C1 and C2 are vectors indicating the quantities of the various items ordered by Customer 1
and Customer 2. Then the total bill for Customer 1 is the sum of the product of PRICE and C1,
while the total bill for Customer 2 is the sum of the product of PRICE and C2.

 32

> PRICE := {0.66, 1.4, 27.1, 2.39, 14, 7.6, 8.45, 2.8}

> C1 := {0 , 0 , 2 , 1 , 0, 0 , 0 , 0 }

> C2 := {12 , 7 , 0 , 5 , 0, 0 , 0 , 10 }

> C1 * PRICE \ #+
56.59

> C2 * PRICE \ #+
57.67

18.2.6 Example: The Area Under a Curve

One simple approach to finding the area under a curve is to divide it into a great many small
trapezoids and then find the sum of the areas of all of them. Suppose you want to find the area
under the curve produced by some function F of X for all the values of X between 0 and 1. You
might get a suitably fine division by splitting that interval into 100 parts. Counting both end points,
that makes 101 values. Suppose now that you have stored under the name FX the vector of the
101 values of F of X as X varies from 0.00 up to 1.00 in steps of 0.01. The area of any one of the
trapezoids is the average of the two values of FX that bound it, times the width of the interval,
which is 0.01. You don’t actually have to average all those adjacent pairs; you can get the same
effect by simply using FX times the width, provided that you first divide the first and last elements
of FX by 2. Suppose that D is a vector whose first and last elements are 2, with ninety-nine 1 in
between. Then you get the area under the curve by the instruction:

 area := FX * width / D \ #+

18.2.7 Array Analysis

Suppose you have an array that represents the ages of a group of people:

AGES := {27, 51, 44, 62, 53, 19, 23, 52, 21, 53, 35, 51, 41}

Now you can ask some questions about these people:

Are they all older than 20? AGES > 20 \ #& returns false

Is one of them older than 60? AGES > 60 \ #| returns true

How old is the youngest person? AGES \ #min: returns 19

How many people are 35 or under? AGES <= 35 \ #+ returns 5

Are they all over 25 but under 60? AGES > 25 & (AGES < 60) \ #& returns false

How many are over 25 but under 60? AGES > 25 & (AGES < 60) \ #+ returns 9

What is the average age? AGES \ #+ / AGES count returns 40.769230769

What is the percentage of people
who are over 30? 100*(AGES>30 \ #+) / AGES count returns 69.23

 33

18.2.8 Example Using an array of arrays

Suppose M is a matrix with 3 rows and 4 columns. With F-Script, M is represented by an array of
arrays.

M := {{1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11, 12}}

If you want to get the sum of the elements for each column, you simply execute the following
reduction:

> M \ #+
{15, 18, 21, 24}

This reduction sums together each elements of M (i.e. each sub-array), and is thus equivalent to
this explicit array operation

{1, 2, 3, 4}
 +
{5, 6, 7, 8}
 +
{9, 10, 11, 12}

which, thanks to the implicit messaging pattern rule, translate itself to:

{1+5+9, 2+6+10, 3+7+11, 4+8+12}

If you want to get the sum of the element for each row, you simply execute the following reduction:

> M @ \ #+
{10, 26, 42}

This time, we needed to apply the reduction one level deeper in M, in order to get to the rows'
elements level. We did this using an explicit messaging pattern, which apply the reduction to each
sub-array. Our instruction is thus equivalent to

{{1 , 2, 3, 4} \ #+ ,
 {5 , 6, 7, 8} \ #+ ,
 {9 , 10, 11, 12} \ #+ }

which is itself equivalent to:

{1 + 2 + 3 + 4,
 5 + 6 + 7 + 8,
 9 + 10 + 11 + 12}

Now, let's see an illustration on a concrete case. A company uses three database servers. Each
time a server is down (due to a problem or for maintenance reasons), the duration of this
downtime is noted. We have an array A that, for each server, list the duration (in min.) of each
downtime incident for the current year:

A := {{49,18,123,3,87,21,7,24,11,19,243},
 {22,5,1,188,2,67},
 {13,15,7,22,55,81,3,19}}

We compute the total downtime of each server using:

> A @ \ #+
{605, 285, 215}

 34

Although all the examples presented in this section use only arrays of numbers and arrays of
booleans, we should stress that the reduction can be used for any kind of arrays, and with any kind of
argument block (compact or not).

 35

19 Advanced Indexing

As we have seen in the previous sections, you can select a particular element of an array by using the at:
method. For example:

> {4,6,8,10,12,16} at:1
6

F-Script has two other very useful ways of indexing, which we introduce below.

19.1 Compression: selecting some elements from an array and omitting others

Suppose you have an array named A. You would like to generate a new array that contains some of the
elements from A, but omits other. For instance, suppose A contains numbers and you want to keep all
those that are greater than zero, while omitting those that aren't. The operation that does this is called
compression and is provided by the method where:. To perform compression, you provide your array
with another array of the same size, made of booleans. This operation returns an array. An element of
the array you are compressing will be in the resulting array if its corresponding element in the boolean
array is true.

Suppose that A is constructed like this:

A := {1, -2, 3, 4, -5, 6, 7, 8}

You want to keep all the elements from A except the second and fifth. So as an index you need an array
that has the same length as A, and all of whose elements have the value true except the second and
the fifth, which must be false.

> A where:{true, false, true, true, false, true, true, true}
{1, 3, 4, 6, 7, 8}

If all the elements of the selection vector (i.e. the array of booleans used as index) are true, then all the
elements from the indexed array are preserved:

> A where:{true, true, true, true, true, true, true, true}
{1, -2, 3, 4, -5, 6, 7, 8}

Conversely, if all the elements of the selection vector are false, then none of the elements from the
indexed array are selected, and so the result is an empty vector:

> A where:{false, false, false, false, false, false, false, false}
{}

You will recall that when F-Script tests whether a relationship is true, it responds with boolean objects.
These booleans are just what is needed for the selection vector during compression. For instance,
suppose you would like to keep from A only those elements that are greater than some constant X. The
expression A > X generates a response for each element in A. That response is true for each element
of A that is greater than X, and false for each that is not:

> A > X
{false, false, false, true, false, true, true, true}

This expression can be used directly in the compression, like this:

> A where: A > X
{4, 6, 7, 8}

(Evidently, X was something smaller than 4, but greater than 3)

> A where: A <= 0
{-2, -5}

 36

Suppose you manage a car store. You have an array named cars that contains objects of class “Car”.
Each one represents a particular car sold by you. The Car class has a method owner, which returns an
object of class “Customer”. This Customer class has a mail: method with which you can send an e-
mail to a customer. The Car class has also a type method that returns the type of the car, and a
groupId method that returns a group identification for the car. Say you want to send a message to all
the owners of a car of type "BMW A" of the group 544. You type:

(cars where:(cars groupId = 544 & (cars type = 'BMW A'))) owner distinct mail:'Dear
customer blah blah blah'

The distinct method returns only the different objects of an array. It is used in the example above
because we want to send only one message to a customer, even if it has purchased several cars of the
selected group and type.

19.2 Indexing by an Array of Integers

Once an array exists, you may want to refer to the elements in certain positions within it. You can select
several elements at once by indexing with an array of integer.

> {4,6,8,10,12,16} at:{1,2,5,2} "This will select the elements at index 1, 2, 5 and 2"
{6, 8, 16, 8}

If you use an index which refer to an element which doesn't exists in the array, F-Script is unable to
execute the instruction and reports an error.

A vector of 0 index number (i.e. an empty vector used as an index) refers to none of the elements of an
array, and therefore it produces an empty vector of results.

> {4,6,8,10,12,16} at:{}
{}

19.3 Indexing arrays of arrays

Suppose M is a matrix with 3 rows and 4 columns. With F-Script, M is represented by an array of arrays.

M := {{1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11, 12}}

If you want to refer to row two, you simply select the second element of M:

> M at:1
{5, 6, 7, 8}

Note that since F-Script indexing start at 0, index of row two is 1.

If you want to refer column two, you enter:

> M @at:1
{2, 6, 10}

Here, note the use of a messaging pattern. This expresses the fact that we want to index each element
of M (i.e. each rows) and not M itself.

If you want to refer to the element in row two, column three, you enter:

> (M at:1) at:2
7

If you would like the third and fourth elements in that row you enter:

> (M at:1) at:{2,3}
{7, 8}

 37

If you would like the elements in column four, rows one and two and one, you enter:

> (M at:{0,1,0}) @at:3 "Note the use of a messaging pattern to get the fourth column"
{4, 8, 4}

You use the same procedure to select a sub-matrix from within M. If you want the matrix of those
elements which are on row two and three and columns one, two and one of M, you enter:

> (M at:{1,2}) @at:{0,1,0}
{{5, 6, 5},
 {9, 10, 9}}

The result is a two by three matrix.

If you would like to select the rows for which the sum of elements are greater than 15, you enter:

 > M where: M @ \ #+ > 15
{{5, 6, 7, 8},
 {9, 10, 11, 12}}

Rows two and three are selected.

 38

20 Other Interesting Messages

This section introduces some other interesting messages, but it is not exhaustive. For example, see >< and
transposedBy: in the FSNSArray category documentation.

20.1 iota

The iota method, sent to a number, generates an array of consecutive integers in the range
[0..receiver-1]. For example:

> 12 iota
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

One way to think of iota is to say that it generates all the index numbers for an array of a given size. It is
used frequently, in many different situations.

For example, an array, A, contains 80 elements. If we want to get the first 15 we could write A
at:{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14}, but A at: 15 iota is shorter.

The iota method is very handy when you want to refer to a consecutive block of numbers. For
instance, you can get the first 35 powers of 2 simply by typing this instruction:

> 2 raisedTo:@ 35 iota
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864,
134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592,
17179869184}

You can create a suite of N numbers, starting at ORIGIN, separated by a constant STEP, with the
following formula: N iota * STEP + (ORIGIN). For example:

> 10 iota * 5 + 100
{100, 105, 110, 115, 120, 125, 130, 135, 140, 145}

20.2 Set Manipulation

The FSNSArray category provides standard Set manipulation messages:

- The union: message returns the union of the receiver and the argument, considered as sets:

> {1,2,3,4,5,6} union:{4,5,6,7,8,9,10}
{10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

- The intersection: message returns the intersection of the receiver and the argument,
considered as sets:

> {1,2,3,4,5,6} intersection:{4,5,6,7,8,9,10}
{4, 5, 6}

- The difference: message returns the receiver minus the argument, considered as sets:

> {1,2,3,4,5,6} difference:{4,5,6,7,8,9,10}
{2, 3, 1}

Elements are compared using the equality notion (i.e. isEqual:).

 39

20.3 Finding the index of an object within an array

Suppose that A is an array which has the following values:

A := {1.2916, 1.3184, 1.2196, 1.1629, 1.2619, 1.2961, 1.1326}

and B is a single number:

B := 1.2619

Then the expression

A ! B

means "Where in A can you find an object equal to B?" Note that object equality is determined using the
"isEqual:" method. The expression is read as "the A-index of B".

F-Script responds with the index number that shows which element of A is equal to B:

> A ! B
4

As you may have noticed, this method is very similar to the method "indexOfObject:" defined by NSArray.

If you would like to know where in A its largest value is located, that can be found using:

> A ! (A \ #max:)
1

And the smallest value likewise:

> A ! (A \ #min:)
6

20.3.1 Finding Several Indices at Once

Suppose instead of being a single number, B is itself an array. In that case, it is easy to ask for the A-
index of each of the elements of B in turn. You just have to use a messaging pattern:

> B := {1.2619, 1.2916, 1.2961}

> A !@ B
{4, 0, 5}

Note that with this messaging pattern, the result always has in it one element for each element in the
argument of !.

 40

20.3.2 Looking for the index of an Object that isn’t there

Suppose that the object passed as argument to ! simply isn't represented anywhere in the receiver.
What number does F-Script returns as the index of this nonexistent element? For an object that isn't
represented anywhere in the receiver, F-Script responds with the first illegal index for the receiver. For
instance, suppose that A is a vector of seven elements with the following values:

> A := {11, 12, 13, 14, 22, 77, 18}

Then the possible index numbers for this vector are the integers 0, 1, 2, 3, 4, 5, 6. The first "illegal" index
for this array is 7. If you ask for the index of a value that isn't anywhere in the vector A, F-Script responds
by saying it is at location 8. For instance:

> A ! @{77, 15}
{5,7}

> A ! 'hello'
7

20.4 Sorting

The result of the sort message sent to an array is an array of integers containing the indices that will
arrange the receiver of sort in ascending order. For example:

> A := {5,2,1,3,6,4}
> A sort
{2, 1, 3, 5, 0, 4}

You can then get A in ascending order by indexing it with the result of sort:

> A at:(A sort)
{1, 2, 3, 4, 5, 6}

The advantage of doing it this way is that, once you have the ordered index numbers, you can then apply
them not only to the original scrambled array, but to any other array of the same size. For example,
suppose you have an array E of object of class Employee. An Employee object responds to the salary
message. To get the employees ordered by salary, you type:

E at:(E salary sort)

The sort method is stable, that is, if two members compare as equal, the order of their indices in the
returned array is preserved.

When sorting, the < message is sent in order to compare the elements of the array. So, note that sorting
will only work if all the elements of the array properly implement this comparison message.

 41

21 Smalltalk collection protocols & F-Script

F-Script differs significantly from standard Smalltalk when it comes to collection support. F-Script is based on
the Cocoa collection framework and provides an original high-level object-oriented programming model,
based on array programming techniques.

Smalltalk provides a set of powerful and handy control structures for dealing with collections of objects (e.g.
applying an operation to each element of a collection, selecting elements verifying a given condition etc.).
However, the F-Script array programming model subsumes this approach, for most purposes. This is why the
traditional Smalltalk collection methods such as do:, collect:, etc. are less used in F-Script, or not present at
all.

In this section we show how to achieve, in F-Script, the effect of some of the methods provided by standard
Smalltalk. In the following examples we assume that C is a collection of Employee instances (in F-Script, C is
represented by an array). Objects of class Employee respond to the salary and raiseSalary: messages.

21.1 do:

The do: method is the fundamental collection iteration method in Smalltalk. It is used to evaluate a block with
each element of a collection. The do: method is also present in F-Script, but in many situations it is better to
use an array expression. In this example, we want to add 1000 to the salary of every employee in our
collection C:

Smalltalk collection protocols C do:[:e| e raiseSalary:1000]

F-Script C raiseSalary:1000

Occasionally, you may still want to use a block-based approach in F-Script (for instance, it may not be
possible to express your instructions as an array expression). In this case, you can use the do: method as in
standard Smalltalk or, alternately, the :@ pattern with the value method:

[:e| e raiseSalary:1000] value:@C

21.2 with:do:

The with:do: method allows you to iterate over two collections at the same time, evaluating a block for each
element of the first collection and each corresponding element of the second collection. On the whole, in F-
Script, this is expressed by an array expression. In this example, we suppose that A is a collection of numbers
representing the amount to add to the salary for each employee.

Smalltalk collection protocols C with:A do:[:e :amount| e raiseSalary:amount]

F-Script C raiseSalary:A

Of course, it is also possible (as always) to use a block-based approach with an explicit messaging pattern (in
this case the :@:@ pattern is used):

[:e :amount| e raiseSalary:amount] value:@C value:@A

21.3 collect:

The collect: method answers a collection constructed by gathering the result of evaluating a block with each
element of the receiver. With F-Script we generally use an array expression to do this. In this example, we
want to generate a collection containing the salary of each employee in C:

 42

Smalltalk collection protocols C collect:[:e| e salary]

F-Script C salary

21.4 select:

The select: method answers a collection which contains only the element in the receiver which cause the
block to evaluate to true. With F-Script, we combine a boolean array expression with a compression. In this
example, we want to select the employees whose salary is lesser than 5000:

Smalltalk collection protocols C select:[:e| e salary < 5000]

F-Script C where: C salary < 5000

21.5 reject:

The reject: method answers a collection which contains only the element in the receiver which causes the
block to evaluate to false. With F-Script, we combine a Boolean array expression with a compression. In this
example, we want to "reject" the employees whose salary is less than 5000, thus selecting the employee
whose salary is greater or equal to 5000:

Smalltalk collection protocols C reject:[:e| e salary < 5000]

F-Script C where: C salary >= 5000

21.6 allSatisfy:

The allSatisfy: method is used to test whether all the elements of the receiver fulfill a certain condition. With
F-Script we combine a Boolean array expression with an AND reduction. In this example, we want to know if
all the employees have a salary greater than 1000:

Smalltalk collection protocols C allSatisfy:[:e| e salary > 1000]

F-Script C salary > 1000 \ #&

21.7 anySatisfy:

The anySatisfy: method tests whether an element of the receiver fulfills a certain condition. With F-Script we
combine a Boolean array expression with an OR reduction. In this example, we want to know if there are any
employees with a salary greater than 1000:

Smalltalk collection protocols C anySatisfy:[:e| e salary > 1000]

F-Script C salary > 1000 \ #|

Note that anySatisfy: may sometimes perform better than the F-Script approach. This is because anySatisfy:
stops iterating the collection as soon as an element is found that meets the condition. If you are in a situation
where this is a problem, you can choose to explicitly iterate using the whileTrue: method.

 43

21.8 inject:into:

The inject:into: method applies an operation cumulatively to all the receiver elements. With F-Script we use
reduction, which is very similar. In this example, we want to get the sum of all the salaries:

Smalltalk collection protocols C inject:0 into:[:sum :e| sum + e salary]

F-Script C salary \ #+

21.9 asSortedCollection:

The asSortedCollection: method is used to sort a collection using a sort order specified by a given sort block.
With F-Script we combine the sort method with indexing. In this example, we want to sort the employees by
salary in ascending order:

Smalltalk collection protocols C asSortedCollection:[:e1 :e2| e1 salary < e2 salary]

F-Script C at: C salary sort

If we want to sort by salary in descending order instead:

Smalltalk collection protocols C asSortedCollection:[:e1 :e2| e1 salary > e2 salary]

F-Script C at: C salary sort reverse

 44

22 Other Notes

22.1 The latent object

When F-Script is launched, a file named fs_latent is searched for at the top level of the F-Script
repository. If this file exists it must contain the textual representation of a block literal. This block is then
instantiated and sent the "value" message. The idea is that you can use this file to do whatever you
want before the interactive F-Script session begins. This is very similar to the ".cshrc" file on Unix.

23 Guidelines for Implementing User Objects

Basically, a user object must be user-friendly and designed to be used interactively. Methods designed to
be used interactively should:

- React in a user-friendly way in the event of an error (bad arguments, problems using some resources,
etc.). A user method should generate a message informing the user of the problem and, whenever
possible, should help the user to find a solution or more information.

- Shield the user from memory management tasks as much as possible: in reference counting mode,
try to avoid transferring the ownership of a new object to the user (in many cases, this means: return
auto-released objects).

When it makes sense, a user object could also:

- Conform to the Cocoa NSCoding Protocol (this will primarily be used by F-Script for saving objects to

disk).

- Implement the setValue: method (cf. section 13)

If the user object provides a graphical interface for interaction with the user, it may be a good idea to
implement the –(void)inspect method on the object. This method should open the graphical user
interface. Some built-in F-Script objects already implement this method. In addition, if implemented, it will
be invoked by the F-Script object browser when the user clicks on the inspect button.

Here is how the division operator of the NSNumber class would deal with the requirements on user
methods: Invoked from F-Script, the "operator_slash:" method takes an NSNumber as argument
and returns an auto-released NSNumber. As shown in our example, we can also use the “double” native
Objective-C type since the mapping will be done automatically. The argument must not be zero, so the
method tests this condition before processing:

-(double)operator_slash:(double)operand
{
 if (operand == 0) FSExecError(@"division by zero");

 return ([self doubleValue]/operand);
}

The FSExecError() function is provided by the F-Script framework. FSExecError() raises an exception, so
the execution of operator_slash: ends if this function is executed.

This is all that is required!

Another possibility is to require an object of class NSNumber for the argument. We will explore this
alternative below, so as to illustrate how to handle arguments that are objects:

 45

-(double)operator_slash:(NSNumber *)operand
{
 double operandValue = [operand doubleValue];

 if (operandValue == 0) FSExecError(@"division by zero");

 return [self doubleValue]/operandValue;
}

In the current implementation of F-Script, the classes of arguments that are objects are not checked
when a message is sent. For the "operator_slash:" method, this means that if a non-NSNumber
object is passed as argument, the method may fail. Therefore, you might want to check the classes of the
arguments:

-(double)operator_slash:(NSNumber *)operand
{
 double operandValue;

 if (![operand isKindOfClass:[NSNumber class]])
 FSExecError(@"argument 1 of method \"/\" must be a number");

 operandValue = [operand doubleValue];

 if (operandValue == 0) FSExecError(@"division by zero");

 return [self doubleValue]/operandValue;
}

A more convenient way to test an argument class is by using a function called FSVerifClassArgs()or
a variation called FSVerifClassArgsNoNil():

-(double)operator_slash:(NSNumber *)operand
{
 double operandValue;

 FSVerifClassArgsNoNil(@"/",1,operand,[NSNumber class]);

 operandValue; = [operand doubleValue];

 if (operandValue == 0) FSExecError(@"division by zero");

 return [self doubleValue]/operandValue;
}

These functions are provided by the F-Script framework, and are explained in more detail in section 57.

 46

24 F-Script in Action: the Flying Tutorial

To activate this tutorial into your F-Script session just type:

> sys installFlightTutorial

This will put the required objects in your workspace.

24.1 Object Model

In this tutorial, you manage an airplane company. Three classes have been designed for you: FSFlight,
FSAirplane and FSPilot.

- An airplane is attributed a number called its ident, and has a model, a capacity and is located at
a particular location.

- A pilot has a name, an address, an age and a salary.

- A flight is attributed a number called its ident, and has a departureDate, an arrivalDate, a

departureLocation, an arrivalLocation. In addition to this, a Flight is under the responsibility of
a pilot and is executed with a particular airplane.

Here are extracts of the Objective-C headers for these classes:

 FSAirplane.h

////////////////////////////////// Methods For FSAirplane ////////////////////////////////

+ (id) aeroplaneWithIdent:(id)theIdent model:(id)theModel capacity:(id)theCapacity
location:(id)theLocation;

- (id) capacity;
- (void) setCapacity:(id)theCapacity;
- (id) ident;
- (void) setIdent:(id)theIdent;
- (id) location;
- (void) setLocation:(id)theLocation;
- (id) model;
- (void) setModel:(id)theModel;

FSPilot.h

////////////////////////////////// Methods For FSPilot ///////////////////////////////////

+ (id) pilotWithName:(id)theName address:(id)theAddress salary:(id)theSalary age:(id)theAge;

- (id) age;
- (void) setAge:(id)theAge;
- (id) address;
- (void) setAddress:(id)theAddress;
- (id) name;
- (void) setName:(id)theName;
- (id) salary;
- (void) setSalary:(id)theSalary;

FSFlight.h

////////////////////////////////// Methods For FSFlight //////////////////////////////////

+ (id) flightWithIdent:(id)theIdent pilot:(id)thePilot airplane:(id)theAirplane
departureDate:(id)theDepartureDate arrivalDate:(id)theArrivalDate
departureLocation:(id)theDepartureLocation arrivalLocation:(id)theArrivalLocation;

- (id) airplane;

 47

- (void) setAirplane:(id)theAirplane;
- (id) arrivalDate;
- (void) setArrivalDate:(id)theArrivalDate;
- (id) arrivalLocation;
- (void) setArrivalLocation:(id)theArrivalLocation;
- (id) departureDate;
- (void) setDepartureDate:(id)theDepartureDate;
- (id) departureLocation;
- (void) setDepartureLocation:(id)theDepartureLocation;
- (id) ident;
- (void) setIdent:(id)theIdent;
- (id) pilot;
- (void) setPilot:(id)thePilot;

Three arrays are defined: F contains all the Flight objects, A contains all the Airplane objects and P all the
Pilot objects.

24.2 Visualization

You can see what is in your three arrays by simply evaluating them. For example, enter:

> P

To get a better view of the array, try this:

 > P inspectWithSystem:sys blocks:{#name, #address, #salary, #age}

You should see a new window with a tabular representation of P.

24.3 Querying

Give all the salaries for each pilot.

> P salary

Give the sum of all salaries.

> P salary \ #+

Give the average salary.

> P salary \ #+ / P count

Give the pilots who live in Paris.

> P where:P address = 'PARIS'

Give the pilots with a salary greater than the average salary.

> P where:P salary > (P salary \ #+ / P count)

Rank the pilots by salary in increasing order.

> P at:P salary sort

Rank the pilots by salary in decreasing order.

> P at:P salary sort reverse

Give the number of pilots living in Paris with a salary greater than or equal to 200 000.

> (P where:P address = 'PARIS' & (P salary >= 200000)) count

 48

Give the airplanes whose locations are in the list {'PARIS', 'NEW YORK', 'BOSTON'}

> A where:({'PARIS', 'NEW YORK', 'BOSTON'} containsObject:@ A location)

 or
> A where:A location =@ {'PARIS', 'NEW YORK', 'BOSTON'} \ #|

 or
> A where:A location @1=@2 {'PARIS', 'NEW YORK', 'BOSTON'} @\ #|

 or
> A where:(A location >< {'PARIS', 'NEW YORK', 'BOSTON'}) @count > 0

or
> A where:{'PARIS', 'NEW YORK', 'BOSTON'} !@ A location < 3

Give the airplanes whose locations are NOT in the list {'PARIS', 'NEW YORK', 'BOSTON'}

> A where:(A location =@ {'PARIS', 'NEW YORK', 'BOSTON'} \ #|) not “among other
possibilities“

For each flight, give the pilot.

> F pilot “ Returns an array, of the same size than F, of Pilot instances“

For each flight, give the name of the pilot.

> F pilot name

For each flight with a pilot living in Paris, give the airplane model.

> (F where:F pilot address = 'PARIS') airplane model

Give a list of the different airplane models of the flights with a pilot who lives in Paris.

> (F where:F pilot address = 'PARIS') airplane model distinct

For each pilot, give all the flights that the pilot is responsible for.

> F at:@ P >< F pilot “Returns an array of the same size than P. Each element

 is an array of flights“

For each pilot, give the number of flights that the pilot is responsible for.

> (F at:@ P >< F pilot) @ count

 Are all pilots responsible for at least two flights?

> (F at:@ P >< F pilot) @ count > 2 \ #&

Give the airplanes that are in the same location as the airplane number 1207.

> A where:A location = ((A where:A ident = 1207) at:0) location

or
> A where:A location = (A at:A ident ! 1207) location

For each airplane, give all the airplanes that are in the same location.

> A at:@ A location >< A location

For each airplane, give all the OTHER airplanes that are in the same location.

> A at:@(A location >< A location @difference:@ A index @enlist)

For each airplane, give all the airplanes that are NOT in the same location.

> A difference:@ (A at:@ A location >< A location)

 49

Give the pilots that are responsible for at least one flight in each airplane.

> P where:(F at:@ P >< F pilot) airplane @distinct @count = A count

 How many cities are the destination of fewer than five flights?

> ((F arrivalLocation union:F departureLocation) >< F arrivalLocation) @count < 5 \ #+

Give the number of flights for each pilot, for each airplane. Put the result in a variable named N.

> N := (A >< @ (F at:@ P >< F pilot) airplane) @@count
> N

Using N, give the number of flights for each pilot.

> N @\ #+

Using N, give the number of flights for each airplane.

> N \ #+

Using N, give the number of flights for each airplane, for each pilot.

> N transposedBy:{1,0}

 50

25 GUI Tutorial

The following instructions open a window with two text fields and a button.
Enter these instructions in your interpreter.

w := NSWindow alloc initWithContentRect:(100<>100 extent:300<>200)
styleMask:NSTitledWindowMask+NSClosableWindowMask backing:NSBackingStoreBuffered
defer:false.

w setTitle:'My calculator'.

w orderFront:nil.

button := (NSButton alloc initWithFrame:(100<>20 extent:100<>50)).

button setBezelStyle:NSRoundedBezelStyle.
w contentView addSubview:button.

t1 := (NSTextField alloc initWithFrame:(60<>120 extent:50<>25)).

t2 := (NSTextField alloc initWithFrame:(200<>120 extent:50<>25)).

w contentView addSubview:t1.

w contentView addSubview:t2.

bl := [t2 setDoubleValue:t1 doubleValue * 2].

button setTarget:bl.
button setAction:#value:.

Enter a numerical value in the left field, then click the button. The right field shows the left field's value
multiplied by 2.

26 Puzzle

Question: what does the puzzle block do when executed?

puzzle := [:v |
 |u w s|
 u := v dup.
 s := {}.
 [u count > 0] whileTrue:
 [
 w := u = (u \ #min:).
 s := s ++ (u where:w).
 u := u where:w not.
].
 s.
]

Turn the page to find out…

 51

Answer:

The puzzle block example is a sorting script (note, however, that a sort method is already provided by
arrays; this script is just a puzzle for fun).

> puzzle := [:v |
 |unsorted which sorted|
 unsorted := v copy.
 sorted := {}.
 [unsorted count > 0] whileTrue:
 [
 which := unsorted = (unsorted \ #min:).
 sorted := sorted ++ (unsorted where:which).
 unsorted := unsorted where:which not.
].
 sorted.
]

> puzzle value:{2,56,1,3,2,5,2,1,-123,0,67}
{-123, 0, 1, 1, 2, 2, 2, 3, 5, 56, 67}

This sorting script arranges the elements of an array in ascending order, using compression to find which
elements should go first, and catenation to reassemble them into a new, ordered array. The procedure is
as follows:

1. Given an array v, create a working copy of it named unsorted.

2. Call the sorted array that results sorted. Start with sorted being an empty array.

3. Test to see whether any elements remain in unsorted. If there are none, go to step 8.

4. Set up the logical array which, with a true corresponding to each element of unsorted that is

equal to the minimum of unsorted.

5. Compress unsorted by which. That is, pick out from unsorted those elements that are equal to

its minimum. Catenate them to those already found in sorted.

6. Compress unsorted by the negation of which. That is, respecify unsorted to be all those

elements that were not selected.

7. Return to step 2.

8. All elements are ordered in sorted. Return it.

Note that this script works only if the objects to be sorted respond to the min: method.

 52

27 Questions & Answers

Q 1: Some symbolic constants names standard to Cocoa (for example NSBackingStoreBuffered)
are pre-defined in the namespace of the F-Script Interpreter, but not all constants are. What am I
supposed to do?

A: If a symbolic constant name is not defined you have to directly use the value associated with this symbolic
constant. To find this value, go to the header file where this constant is defined.

Q 2: Any support for AppleScript?

Yes, through the "eval" verb. Example:

tell application "F-Script"
 eval "10 iota"
end tell

 53

User Classes and Categories

F-SCRIPT USER CLASS: FSARRAY

54

28 FSArray

Inherits From: NSMutableArray

Conforms To: NSCoding

NSCopying
NSObject (NSObject)

Declared In: FScript/FSArray.h

Class Description

FSArray is a concrete subclass of NSMutableArray. It provides an optimized implementation of
F-Script's array programming model.

Inserting a number in an instance of this class is a special case; for efficiency purposes, the
number you insert may not be really referenced by the array, instead the array may just store
its value. This means that, when indexing the array, you may not get back your original
number object, but another number object with the same value.

NSArray and NSMutableArray, which are FSArray superclasses, do not allow the nil value to
be referenced in an array. This is not an acceptable limitation for an array language such as F-
Script. To avoid this problem, the FSArray class supports the insertion of nil. However, you
should be careful when using an array that actually contains nil, because that breaks an
important NSArray class invariant. Generic code dealing with NSArrays is usually not prepared
to handle an array that contains nil, and, consequently, may fail in this situation. When using
such an array, you should only pass it to code that has been specifically designed to handle nil
in arrays, or is known to be safe in this case. All the methods declared in the FSArray class
header (i.e., FSArray.h) as well as in the FSNSArray and FSNSMutableArray category
headers (i.e., FSNSArray.h, FSNSMutableArray.h) have been designed to handle nil in arrays
correctly. This includes all the methods described in this manual.

F-SCRIPT USER CLASS: FSASSOCIATION

55

29 FSAssociation

Inherits From: NSObject

Conforms To: NSCoding

NSObject (NSObject)

Declared In: FScript/FSAssociation.h

Class Description

An FSAssociation represents an association, or mapping, between two objects. One is named
the “key” and the other is named the “value”. FSAssociations are typically used to specify
dictionary entries.

FSAssociations are usually created using the -> method defined in the FSNSObject category.

Method Types

Creating + associationWithKey:value:

Initializing - initWithKey:value:

Testing equality - isEqual:
 =
 ~=

Hashing - hash

Accessing - key
 - value

Obtaining string representations - description

Class Methods

associationWithKey:value:

+ (id) associationWithKey:(id)theKey value:(id)theValue

Returns a new FSAssociation instance representing an association between theKey and
theValue.

F-SCRIPT USER CLASS: FSASSOCIATION

56

Instance Methods

= (operator_equal:)

- (FSBoolean *) = (id)anObject

Returns whether the receiver and the arguments are equals, as determined by isEqual:.

~= (operator_tilde_equal:)

-(FSBoolean *) ~= (id)anObject

Returns whether the receiver and the arguments are not equals, as determined by isEqual:.

initWithKey:value:

- (id) initWithKey:(id)theKey value:(id)theValue

Initialize a newly allocated FSAssociation object with theKey and theValue.

description

-(NSString*) description

Returns a string representation of the receiver.

hash

@protocol NSObject
-(NSUInteger) hash

Returns a hash code based on the receiver value.

isEqual:

- (BOOL) isEqual:object

Returns YES if the receiver and object represent the same association (same keys and values
as determined by isEqual:), otherwise returns NO.

key

- (id) key

Returns the association’s key.

F-SCRIPT USER CLASS: FSASSOCIATION

57

value

- (id) value

Returns the association’s value.

F-SCRIPT USER CLASS: FSBLOCK

58

30 FSBlock

Inherits From: NSObject

Conforms To: NSCoding

NSCopying
NSObject (NSObject)

Declared In: FScript/FSBlock.h

Class Description

Note: Extensive documentation about blocks can be found in the Smalltalk literature.

The FSBlock class provides the concept of script, or procedure, or function. A block is an
object containing a sequence of F-Script statements. When a block is evaluated using an
acceptable value message, its statements are executed. A block can take an arbitrary number
of arguments and can have its own temporary variables, as well as having access to variables
of its enclosing environment. The statements in the block are executed when the block is sent
a message in the form "value","value:", "value:value:" etc. where the number of colons in the
message is at least the same as the number of arguments the block takes (extra arguments
are ignored, but it is an error not to provide enough). When a block takes more than twelve
arguments you cannot use the "value[:]" form, but instead you have to use the
valueWithArguments:, a method which works for any number of arguments.

Among other things, Blocks are used to implement several control structures in F-Script and
allow the programmer to easily extend the system using customized control structures.

Here are some examples of blocks:

[5 * 2] is a block which evaluates to 10 when executed.

[:a :b | a+b] is a block with two arguments, a and b, which, when executed, send the +
message to its first argument using its second argument as a parameter.

[:a :b| |loc | loc := a copy. a setValue:b. b setValue:loc] is a block with two arguments, a
and b, and a temporary, loc. When executed, this block switches the values of its two
arguments (in this example, they must support the setValue: method).

F-SCRIPT USER CLASS: FSBLOCK

59

The general form of block literal is given by this grammar
<block> ::= <compact block> | '[' <block body> ']'
<compact block> ::= '#' <selector>
<block body> ::= <declarations> <statements>
<declarations> ::= <block argument>* '|'] [<temporaries>]
<block binding> ::= '*' identifier
<block argument> ::= ':' identifier
<temporaries> ::= '|' identifier* '|'

The <statements> part is some regular F-Script code.

The <declaration> part is optional as are each of its subparts. The argument subpart is a list of
argument declarations. An argument declaration is made up of the sign : followed by an
identifier. The temporaries subpart is a list of identifiers inside a couple of |

Like other literal expressions in F-Script, the evaluation of a block literal in an F-Script
expression creates and returns a block instance; an object of the FSBlock class.

To execute a block object, send it a value... message. For example:

[5 * 2] value evaluates to 10.

[:arg | arg sqrt] value:16 evaluates to 4.

[:a :b | a+b] value:2 value:3 evaluates to 5.

[:a :b | a+b] valueWithArguments:{2,3} evaluates to 5.

Expressions within a block can, of course, reference temporary variables and arguments of
the block. They may also reference “externals” identifiers defined in the environment where the
block was syntactically defined (these may be global variables as well as arguments or
temporary variables of a syntactically enclosing block). Each block object is an independent
closure that captures the current bindings for any of these identifiers which are referenced
from within the block code. Any such captured bindings and their associated discrete variable
or objects are preserved as long as the block object continues to exist and is available for
evaluation. Note that the value of any such captured discrete variables and the state of any
object captured by an argument binding remain subject to possible modification.

There is another form of FSBlock literal called the compact form. This form may be used when
all the block does is send a message. Here are some examples:

#sqrt is functionally equivalent to [:a | a sqrt]

#max: is functionally equivalent to [:a :b | a max:b]

#+ is functionally equivalent to [:a :b | a+b]

#between:and: is functionally equivalent to [:a :b :c | a between:b and:c]

A compact literal creates what we call a “compact block.”

Blocks are powerful tools. Because they are objects, they can be used as arguments to
methods; they can be saved and loaded, inserted into collection etc. In addition, Blocks
support the control structure style of F-Script. In F-Script there are no special instructions for
control structures such as while... or if...else. These control structures are realized by using the

F-SCRIPT USER CLASS: FSBLOCK

60

general messaging mechanism. (See the method ifTrue: and ifTrue:ifFalse: in the
FSBoolean class and whileTrue: in this class.)

Once a block has been created, it can be interactively edited by sending it the inspect
message.

Several methods of this class will cause blocks to be compiled or executed. If this leads to an
error (i.e. syntax error during compilation or a run-time error during execution) then the method
will be interrupted and an exception will be raised. In some cases this exception-raising
behavior may not be what you want. For instance, if your block is the target of a button and the
action method is value:, the button will not handle the exception raised by value: in the advent
of an error. The guardedValue: method provides a useful alternative in such cases. See also
the executeWithArguments: method.

Method Types

Executing a block -executeWithArguments:
 -guardedValue:
 -valueWithArguments:
 -value
 -value:
 -value:value:
 -value:value:value:
 -value:value:value:value:
 -value:value:value:value:value:
 -value:value:value:value:value:value:
 -value:value:value:value:value:value:value:
 -value:value:value:value:value:value:value:value:
 -value:value:value:value:value:value:value:value:value:
 -value:value:value:value:value:value:value:value:value:value:
 -value:value:value:value:value:value:value:value:value:value:value:
 -value:value:value:value:value:value:value:value:value:value:value:value:

Control structures support -whileTrue
 -whileTrue:

Exception handling -onException:

Copying -setValue:

Editing -inspect

String representation -description

Other properties -argumentCount

 Testing equality -isEqual:
 =
 ~= -

 Hashing -hash

F-SCRIPT USER CLASS: FSBLOCK

61

Instance Methods

= (operator_equal:)

-(FSBoolean *) = (id)anObject

Returns whether the receiver and the arguments are equals, as determined by isEqual:.

~= (operator_tilde_equal:)

-(FSBoolean *) ~= (id)anObject

Returns whether the receiver and the arguments are not equals, as determined by isEqual:.

argumentCount

-(NSInteger) argumentCount

Answers the number of arguments required to evaluate the receiver.

description

-(NSString *) description

Returns a string representation of the receiver using the block literal format.

executeWithArguments:

-(FSInterpreterResult *) executeWithArguments:(NSArray *)arguments

Executes the receiver with arguments provided in arguments. Returns an FSinterpreterResult
instance representing the outcome of the execution.

guardedValue:

-(id) guardedValue:(id)arg1

Executes the receiver, using arg1 as an argument, and returns the result. If an error occurs
during execution, displays the block call stack to the user and returns nil.
This method is useful, for example, when you want a block to be the target of an NSControl
(for instance a button). Instead of using value: as the action method, you may use this
method in order to have the block inspector pops-up automatically in case of error.

hash

@protocol NSObject
-(NSUInteger) hash

Returns a hash code based on the receiver value.

F-SCRIPT USER CLASS: FSBLOCK

62

inspect

-(void) inspect

Opens the receiver inspector, a window in which you can interactively edit the receiver source
code. The source code displayed in the inspector is always in-sync with the block.

isEqual:

@protocol NSObject
-(BOOL) isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A block is
considered equal to another object if either there is identity between the block and the object
(i.e. if they are in fact the same object in memory) or if they are both compact blocks with the
same selector.

onException:

-(id) onException:(FSBlock*) handler

Precondition: receiver argumentCount = 0 & (handler argumentCount <= 1)

The receiver is evaluated so that, if its evaluation results in a Cocoa exception, then handler is
evaluated. The handler is given an NSException as argument. The result is either the result of
the evaluation of the receiver if no exception is raised, or the result of the evaluation of handler.

Example:

"Will play a beep and log the NSException raised by the division by zero"

[1/0] onException:[:e| sys beep. stdout print:e description]

return

-(id) return

Precondition: The receiver is being executed.

Stops the current execution of the receiver. The result of the current execution is an FSVoid
object.

F-SCRIPT USER CLASS: FSBLOCK

63

return:

-(void) return:(id)returnValue

Precondition: The receiver is being executed.

Stops the current execution of the receiver. The result of the current execution is returnValue.

C code F-Script Code

int search(int searched)
{
 int i = 0;
 while(1)
 {
 if (a[i] == searched) return i;
 i++;
 }
}

b := [:searched| |i|
 i := 0.
 [true] whileTrue:
 [
 (a at:i) = searched ifTrue:[b return:i].
 i := i+1.
]
]

setValue:

-(void) setValue: (id)operand

Precondition: operand is a FSBlock

Sets the value of the receiver to the operand value. The receiver becomes an exact copy of
operand.

value

-(id) value

Executes the receiver and returns the result.

value:

-(id) value:(id)arg1

Executes the receiver, using arg1 as an argument and returns the result.

value:value:

-(id) value:(id)arg1 value:(id)arg2

Executes the receiver, using arg1 and arg2 as arguments and returns the result.

value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3

Executes the receiver, using arg1, arg2 and arg3 as arguments and returns the result.

F-SCRIPT USER CLASS: FSBLOCK

64

value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4

Executes the receiver, using arg1, arg2, arg3 and arg4 as arguments and returns the result.

value:value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4 value:(id)arg5

Executes the receiver, using arg1, arg2, arg3, arg4 and arg5 as arguments and returns the
result.

value:value:value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4 value:(id)arg5
value:(id)arg6

Executes the receiver, using arg1, arg2, arg3, arg4, arg5 and arg6 as arguments and returns
the result.

value:value:value:value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4 value:(id)arg5
value:(id)arg6 value:(id)arg7

Executes the receiver, using arg1, arg2, arg3, arg4, arg5, arg6 and arg7 as arguments and
returns the result.

value:value:value:value:value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4 value:(id)arg5
value:(id)arg6 value:(id)arg7 value :(id)arg8

Executes the receiver, using arg1, arg2, arg3, arg4, arg5, arg6, arg7 and arg8 as arguments
and returns the result.

value:value:value:value:value:value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4 value:(id)arg5
value:(id)arg6 value:(id)arg7 value:(id)arg8 value:(id)arg9

Executes the receiver, using arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8 and arg9 as
arguments and returns the result.

F-SCRIPT USER CLASS: FSBLOCK

65

value:value:value:value:value:value:value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4 value:(id)arg5
value:(id)arg6 value:(id)arg7 value:(id)arg8 value:(id)arg9 value:(id)arg10

Executes the receiver, using arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9 and arg10 as
arguments and returns the result.

value:value:value:value:value:value:value:value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4 value:(id)arg5
value:(id)arg6 value:(id)arg7 value:(id)arg8 value:(id)arg9 value:(id)arg10
value:(id)arg11

Executes the receiver, using arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9, arg10 and
arg11 as arguments and returns the result.

value:value:value:value:value:value:value:value:value:value:value:value:

-(id) value:(id)arg1 value:(id)arg2 value:(id)arg3 value:(id)arg4 value:(id)arg5
value:(id)arg6 value:(id)arg7 value:(id)arg8 value:(id)arg9 value:(id)arg10
value:(id)arg11 value:(id)arg12

Executes the receiver, using arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9, arg10, arg11
and arg12 as arguments and returns the result.

valueWithArguments:

-(id) valueWithArguments:(NSArray *)operand

Executes the receiver with arguments provided in operand and returns the result.

whileFalse

-(id) whileFalse

Repeatedly evaluates the receiver as long as it evaluates to false.

whileFalse:

-(id) whileFalse:(FSBlock*)operand

Repeatedly evaluates operand as long as the receiver evaluates to false.

whileTrue

-(id) whileTrue

Repeatedly evaluates the receiver as long as it evaluates to true.

F-SCRIPT USER CLASS: FSBLOCK

66

whileTrue:

-(id) whileTrue:(FSBlock*)operand

Repeatedly evaluates operand as long as the receiver evaluates to true.

C code

i = 0;
while (i < 100)
{
 i = i +1;
}

F-Script code

i := 0.
[i < 100] whileTrue:
[
 i := i+1.
]

F-SCRIPT USER CLASS: FSBOOLEAN

67

31 FSBoolean

Inherits From: NSObject

Conforms To: NSCoding

NSCopying
NSObject (NSObject)

Declared In: FScript/FSBoolean.h

Class Description

FSBoolean is a semi-abstract class which represents Booleans in F-Script. F-Script provides a
literal notation for creating FSBoolean objects. This class provides the traditional Boolean
operations and supports the control structure style of F-Script.

Boolean literals in F-Script are true, false, YES, NO.

FSBoolean has two concrete subclasses, True and False. Each has a single instance. The
instance of the True class is referred to as true. The instance of the False class is referred to
as false.

The FSBoolean class implements a small number of generic methods which apply to both
true and false. The other methods are just declared in this class and implemented by the True
and False concrete subclasses. You should never instantiate either FSBoolean class, or the
True and False classes. Instead, you must use the true and false predefined objects (these
can be obtained programmatically using the +fsTrue, +fsFalse and +booleanWithBool:
class methods).

Method Types

Obtaining FSBoolean instances + booleanWithBool:
 + fsTrue
 + fsFalse

Testing equality -isEqual:
 =
 ~=

Logical operations &
 |
 -and:
 -not
 -or:

Control structures -ifFalse:
 -ifFalse:ifTrue:
 -ifTrue:
 -ifTrue:ifFalse:

Obtaining string representations -description

F-SCRIPT USER CLASS: FSBOOLEAN

68

Additional support +
 <

Class Methods

booleanWithBool:

+ (FSBoolean *) booleanWithBool:(BOOL)theBool

Returns the true object if theBool is true.
Returns the false object if theBool is false.

fsTrue

+ (FSBoolean *) fsTrue

Returns the true object.

fsFalse

+ (FSBoolean *) fsFalse

Returns the false object.

Instance Methods

& (operator_ampersand:)

-(FSBoolean*) & (FSBoolean*)operand

The logical AND operator. Returns true if the receiver and "operand value" are both true.
Otherwise, returns false.

| (operator_bar:)

-(FSBoolean*) | (FSBoolean*)operand

The logical OR operator. Returns false if the receiver and "operand value" are both false.
Otherwise, returns true.

= (operator_equal:)

-(FSBoolean *) = (id)anObject

Returns whether the receiver and the arguments are equals, as determined by isEqual:.

F-SCRIPT USER CLASS: FSBOOLEAN

69

< (operator_less:)

-(FSBoolean*) < (FSBoolean *)operand

If the receiver is false and operand is true returns true, else returns false.

+ (operator_plus:)

-(NSNumber*) + (id)operand

Precondition: operand = true | (operand = false)

Returns a number whose value is given in the table below:

receiver operand returned value

false false 0
false true 1
true false 1
true true 2

~= (operator_tilde_equal:)

-(FSBoolean *) ~= (id)anObject

Returns whether the receiver and the arguments are not equals, as determined by isEqual:.

and:

-(FSBoolean*) and:(FSBlock*)operand

Precondition: receiver = false | (operand value = true | (operand value = false))

“Short circuit” logical AND. If the receiver is false, returns false. Otherwise, returns the
Boolean result of sending the “value” message to operand. If the result of sending “value” to
operand is not a Boolean, an error is raised.

description

-(NSString*) description

Returns a string representation of the receiver: "true" or "false."

ifFalse:

-(id) ifFalse:(FSBlock *)falseBlock

If the receiver is false returns the result of sending the message “value” to falseBlock. If the
receiver is true, returns nil.

F-SCRIPT USER CLASS: FSBOOLEAN

70

ifFalse:ifTrue:

-(id) ifFalse:(FSBlock *)falseBlock ifTrue:(FSBlock *)trueBlock

If the receiver is false, returns the result of sending the message “value” to falseBlock. If the
receiver is true returns the result of sending the message “value” to trueBlock.

ifTrue:

-(id) ifTrue:(FSBlock *)trueBlock

If the receiver is true returns the result of sending the message “value” to trueBlock. If the
receiver is false, returns nil.

ifTrue:ifFalse:

-(id) ifTrue:(FSBlock *)trueOprerand ifFalse:(FSBlock *)falseBlock

If the receiver is true, returns the result of sending the message “value” to trueBlock. If the
receiver is false returns the result of sending the message “value” to falseBlock.

isEqual:

- (BOOL) isEqual:object

Returns YES if the receiver and object represent the same boolean value, otherwise returns
NO.

not

-(FSBoolean*) not

Returns false if the receiver is true, otherwise returns true.

or:

-(FSBoolean*) or: (FSBlock *)operand

Precondition: receiver = true | (operand value = true | (operand value = false))

“Short circuit” logical OR. If the receiver is true, returns true. Otherwise, returns the Boolean
result of sending the message “value” to operand. If the result of sending “value” to operand is
not a Boolean, an error is raised.

F-SCRIPT USER CLASS: FSGENERICPOINTER

71

32 FSGenericPointer

Inherits From: FSPointer

Conforms To: NSObject (NSObject)

Declared In: FScript/FSGenericPointer.h

Class Description

An FSGenericPointer denotes a memory location.

An FSGenericPointer object contains a C pointer and a string describing the type of the
referenced data, using the Objective-C run-time type encoding system. For instance, the type
of a Pointer containing an int * is "i" (because "i" is the Objective-C type encoding for an int).

FSGenericPointers can be dereferenced using the at: and at:put: methods. Note that
FSGenericPointers of type "v", which represent "void *" pointers, cannot be dereferenced.
However, it is possible to set the type of an FSGenericPointer with the setType: method.

Note: due to a limitation in the current Objective-C run-time, invoking, from F-Script, a method
whose return type is "unsigned char *" yields a Pointer object with a type of "c" instead of "C".
This means that the resulting Pointer object behave as if it were based on a "char *" pointer
instead of "unsigned char *". This might lead to incorrect results when dereferencing the
Pointer object, because the referenced unsigned char(s) will be treated like signed char(s).

Method Types

Freeing - free
 - setFreeWhenDone:

Dereferencing - at:
 - at:put:

Setting the type of a pointer - setType:

Instance Methods

at:

-(id) at:(id)index

Precondition: index is an NSNumber representing a positive integer and is a valid offset for
dereferencing the pointer.

Dereferences the pointer, using index as the offset, and returns the value of the corresponding
memory zone. If this value is not an object, a mapping occurs automatically in order to return
an object representing the value. The mapping follows the common F-Script mapping rules (cf.

F-SCRIPT USER CLASS: FSGENERICPOINTER

72

section 15.2), except for "char *" pointers: when a "char *" pointer is dereferenced, the result is
an NSNumber containing the value of the pointed char.

Example:

In this example, we assume we have an object named myObject, which has a method called
intPointer which returns a value of type (int *). That is, the method returns the address of an
array of int. By executing the instruction myPointer := myObject intPointer, we generate an
FSGenericPointer object representing the int * returned by our method and assign it to the
variable myPointer. Then to get the value of the first int referenced by the pointer, we can
execute: myPointer at:0, which returns an NSNumber. To get the value of the second int
referenced by the pointer we execute myPointer at:1 , etc.

at:put:

-(id) at:(id)index put:(id)elem

Precondition: index is an NSNumber representing a positive integer and is a valid offset for
dereferencing the pointer. elem is compatible with the receiver's type.

Dereferences the pointer, using index as the offset, and write the value of elem in the
corresponding memory zone. If needed, a mapping occurs from elem to a non-object type.
The mapping follows the common F-Script mapping rules (cf. section 15.2).

free

-(void) free

Free the memory zone referenced by the receiver, using the C free() function.

setFreeWhenDone:

-(void) setFreeWhenDone:(BOOL)freeWhenDone

Set whether the memory zone referenced by the receiver should be automatically freed when
the receiver is deallocated (or finalized if running in GC mode). The C free() function is used to
free the memory zone.

setType:

-(void) setType:(NSString *)theType

Precondition: theType is a valid Objective-C run-time type encoding string.

Set the type of the receiver to theType.

F-SCRIPT USER CATEGORY: FSNSARRAY 73

33 FSNSArray

Category of: NSArray

Declared In: FScript/FSNSArray.h

Category Description

This category of NSArray adds a number of methods to the standard NSArray class, in order
to support F-Script's array programming model. See also the FSNSMutableArray category.

Method Types

Indexing -at:
 -replicate:

Compressing
 -where:

Getting only distinct elements -distinct
 -distinctId

Getting indices -index

Set operations -intersection:
 -union:
 -difference:

Reductions \
 -scan:

Joining ><

Rotating -rotatedBy:

Reversing -reverse

Concatenation ++

Searching !
 !!

Sorting -sort

Traversing -do:

Inspecting -inspect
 -inspectWithSystem:
 -inspectWithSystem:blocks:

F-SCRIPT USER CATEGORY: FSNSARRAY 74

Obtaining string representations -printString

Miscellaneous -prefixes
 -subpartsOfSize:
 -transposedBy:

Instance Methods

\ (operator_backslash:)

-(id) \ (FSBlock *)operand

Precondition: operand is a FSBlock with two arguments.

The “reduction” operation applies the operand block cumulatively to all the receiver elements
and returns the result. More precisely, it evaluates operand using the two first elements of the
receiver as arguments, then evaluates operand again using the result of the previous
evaluation and the next receiver element as an argument, and does so until the last receiver
element has been reached.

{1,2,3,4,5} \ #+

is executed as if it were

1+2+3+4+5

and returns 15.

When the receiver is empty, it returns nil.
When the receiver has only one element, it returns this element.

>< (operator_greater_less:)

-(FSArray *) >< (NSArray *)operand

The “join” operation. For each receiver element, for example e, this method computes an array
containing the positions of e in operand. Returns all these Arrays packed into an array of
arrays. This method involves comparisons between the receiver elements and the operand
ones; these comparisons are made using the notion of equality (i.e. isEqual:), not the notion
of identity (i.e. ==).

Example:

{1,2,'foo'} >< {4,'foo',1,'foo','foo'} returns {{2},{},{1,3,4}}

F-SCRIPT USER CATEGORY: FSNSARRAY 75

++ (operator_plus_plus:)

-(FSArray *) ++ (NSArray *)operand

The concatenation method. Returns an array which is the concatenation of the receiver and
operand. The receiver and operand remain unchanged.

{1,2,3} ++ {4,5} returns {1,2,3,4,5}

! (operator_exclam:)

-(NSNumber *) ! (id)operand

Returns the index of operand in the receiver. The notion of equality (i.e. isEqual:) is used for
comparisons between operand and the receiver elements. Only the first occurrence of
operand in the receiver is taken into account. If operand is not found in the receiver, the first
illegal index of the receiver is returned.

{10,11,12,13,14} ! 11 returns 1
{10,11,12,13,14} ! 20 returns 5

!! (operator_exclam_exclam:)

-(NSNumber *) !! (id)operand

Same as ! but uses the notion of identity (i.e. pointer equality) for the comparisons.

at:

-(id) at:(id)index

Precondition: index is an integer in the range [0,receiver count - 1] or an array of integers

in the range [0,receiver count - 1] or an NSIndexSet containing integers in
the range [0,receiver count - 1].

If index is a number, this method returns the element of the receiver whose index is equal to
index. Note that indexing starts at zero.

If index is an array of numbers or an NSIndexSet, this method returns, in an array, the
elements of the receiver whose indices are given in index.

{10,11,12,13,14} at:1 returns 11
{10,11,12,13,14} at:{1,4} returns {11,14}
{10,11,12,13,14} at:{1,4,4} returns {11,14,14}

difference:

-(FSArray *) difference:(NSArray *)operand

Returns, in an array, the receiver elements which are not elements of operand.
The notion of equality is used for comparing.

F-SCRIPT USER CATEGORY: FSNSARRAY 76

{1,4,4,4,5} difference:{4,5,6,7,8} returns {1}

distinct

-(FSArray *) distinct

Returns an array referencing, only once, each object referenced by the receiver.
Use this method to get the different elements of an array.
The notion of equality (i.e. isEqual:) is used for the comparisons.
The order of elements in the receiver is not preserved in the returned array.

{1,2,2,1,1,1,3} distinct returns {1,3,2}

distinctId

-(FSArray *) distinctId

Same as distinct but uses the notion of identity for the comparisons.

do:

-(void) do:(FSBlock *)operation

For each element of the receiver, operation is evaluated with the element as the parameter.
The operation is evaluated with each element of the receiver in indexed order starting with
element at index 0.

index

-(FSArray *) index

Returns, in an array, all the valid indices of the receiver, in ascending order.

{10,11,12,'foo'} index returns {0,1,2,3}

inspect

-(void) inspect

Open a graphical inspector displaying the elements of the receiver.

inspectWithSystem:

-(void) inspectWithSystem:(FSSystem *)system

Open a graphical inspector displaying the elements of the receiver. When the inspector creates
a block, it does so in the context of the workspace associated with the argument. Typically,

F-SCRIPT USER CATEGORY: FSNSARRAY 77

when you call this method from F-Script, you pass the current system object. Example:
{1,2,3,4} inspectWithSystem:sys

inspectWithSystem:blocks:

-(void) inspectWithSystem:(FSSystem *)system blocks: (NSArray *)blocks

Precondition: blocks is an array of one-arguments or zero-argument blocks.

Open a graphical inspector displaying the elements of the receiver. When the inspector creates
a block, it does so in the context of the workspace associated with system. The inspector uses
the blocks you provides to compute its column’s values.

intersection:

-(FSArray *) intersection:(NSArray *)operand

Returns, in an array, the elements referenced by both the receiver and operand.
The notion of equality is used for comparing.

{1,4,4,4,5} intersection:{4,5,6,7,8} returns {4,5}

prefixes

-(FSArray *) prefixes

Returns, in an array of array, all the prefixes of the receiver. Each sub-array of the result is a
prefix. As this method has an O(n2) complexity, you should use it carefully.

{1,2,3,4} prefix es returns {{1},{1,2},{1,2,3},{1,2,3,4}}

printString

-(NSString*) printString

Returns a string representation of the receiver, in the syntactic form of an array literal.

replicate:

-(FSArray *) replicate:(NSArray *)operand

Precondition: operand is an array, with the same size as the receiver, of positive integers.

Each operand element represents the number of references to the corresponding receiver
element which will be inserted in the returned array.

{10,11,12,13,14} replicate:{0,1,2,3,1} returns {11,12,12,13,13,13,14}

reverse

F-SCRIPT USER CATEGORY: FSNSARRAY 78

-(FSArray *) reverse

Returns an array with the same elements as the receiver, but in reverse order.

{1,2,3,4} reverse returns {4,3,2,1}

rotatedBy:

-(void) rotatedBy:(NSNumber *)operand

Returns a circular permutation of the receiver. The permutation is made to the left or to the
right, depending on the operand sign.

{1,2,3,4,5,6} rotatedBy:2 returns {3,4,5,6,1,2}

{1,2,3,4,5,6} rotatedBy:-2 returns {5,6,1,2,3,4}

scan:

-(FSArray *) scan:(FSBlock *)operand

Precondition: operand is a FSBlock with two arguments.

The same as the reduction operation but returns an array with all the intermediate results
computed during the reduction.

{1,2,3,4,5} scan: #+ returns {1,3,6,10,15}

sort

-(FSArray *) sort

Precondition: The elements of the receiver implement the operator_less: method to

provide a total order.

Returns, in an array, the indices that will arrange the receiver in ascending order. The sort
method is stable, that is, if two members compare as equal, the order of their indices in the
returned array is preserved.

{12,15,13,11,14} sort returns {3,0,2,4,1}

subpartsOfSize:

-(FSArray *) subpartsOfSize:(NSNumber *)size

Precondition: size is a non-negative integer.

Returns, in an array, all the receiver subparts of size size.
As this method has an O(n2) complexity, you should use it carefully.

{1,2,3,4} subpartsOfSize :0 returns {}
{1,2,3,4} subpartsOfSize :1 returns {{1},{2},{3},{4}}

F-SCRIPT USER CATEGORY: FSNSARRAY 79

{1,2,3,4} subpartsOfSize :2 returns {{1,2},{2,3},{3,4}}

transposedBy:

-(FSArray *) transposedBy:(NSArray *)operand

Precondition: The receiver is a hypercube and operand is an array and contains a

permutation of the integers in range [1..number of dimensions of the
receiver].

The transposition operation.

Let's begin by explaining the concept of hypercube.
F-Script does not explicitly cater for multidimensional arrays. An F-Script array is a mono-
dimensional array, a list. As an array can contain other arrays, you “simulate” multidimensional
arrays using arrays of array. F-Script uses the term “hypercube” to describe a special kind of
such a simulated multi-dimensional array. Note that some arrays of array are not hypercubes.
For example, the array {{11,12,13}, {21,22,23}} is a hypercube (in this case a 2*3 matrix), but
the array {{11,12,13},{21,22}} is not a hypercube as one dimension does not have a constant
number of elements.
An order is defined on the dimensions of an hypercube; for example, in the hypercube
{{11,12,13},{21,22,23}}, the first dimension is those having two elements and the second is
those having three elements.

This method computes and returns a hypercube which is a transposition of the receiver
according to the transposition vector passed as operand. A transposition consists in
restructuring a hypercube so that its coordinates appear in a permuted order. The element of
the transposition vector at index i specifies the dimension of the receiver which becomes the
dimension i in the result. For example, {1,2,0} as a transposition vector specifies that the first
dimension of the result is the second dimension of the receiver, that the second dimension of
the result is the third dimension of the receiver and that the third dimension of the result is the
first dimension of the result.

{{11,12,13}, {21,22,23}} transposedBy:{1,0}
returns {{11,21}, {12, 22}, {13, 23}}

union:

-(FSArray *) union:(NSArray *)operand

Returns, in an array, the union of the elements referenced by the receiver and operand.
The notion of equality is used for comparing.

{1,4,4,4,5} union:{4,5,6,7,8} returns {1,4,5,6,7,8}

F-SCRIPT USER CATEGORY: FSNSARRAY 80

where:
-(FSArray *) where:(NSArray *)booleans

Precondition: booleans is an array of booleans of the same size as the receiver.

This method returns, in an array, the elements of the receiver whose positional matching
element in booleans is true.

{10,11,12,13,14} where:{false, true, true, false, true} returns {11,12,14}

F-SCRIPT USER CATEGORY: FSNSATTRIBUTEDSTRING 81

34 FSNSAttributedString

Category of: NSAttributedString

Declared In: FScript/FSNSAttributedString.h

Category Description

This category provides inspector support to NSAttributedString objects.

Instance Methods

inspect

-(void) inspect

Opens an inspector displaying the receiver.

F-SCRIPT USER CATEGORY: FSNSDATE 82

35 FSNSDate

Category of: NSDate

Declared In: FScript/FSNSDate.h

Category Description

This category provides some user methods for use with NSDate objects. For Date creation,
see the methods asDate in FSNSString and FSNSNumber.

Instance Methods

max:

-(NSDate *) max:(NSDate *)operand

Returns the maximum of the receiver and operand.

min:

-(NSDate *) min:(NSDate *)operand

Returns the minimum of the receiver and operand.

= (operator_equal:)

-(FSBoolean *) = (id)anObject

Returns whether the receiver and the arguments are equals, as determined by isEqual:.

~= (operator_tilde_equal:)

-(FSBoolean *) ~= (id)anObject

Returns whether the receiver and the arguments are not equals, as determined by isEqual:.

> (operator_greater:)

-(FSBoolean*) > (NSDate *)operand

If the receiver is greater than operand, returns the Boolean object true, otherwise returns the
Boolean object false.

F-SCRIPT USER CATEGORY: FSNSDATE 83

>= (operator_greater_equal:)

-(FSBoolean*) >= (NSDate *)operand

If the receiver is greater than or equal to operand, returns the Boolean object true, otherwise
returns the Boolean object false.

< (operator_less:)

-(FSBoolean*) < (NSDate *)operand

If the receiver is less than operand, it returns the Boolean object true, otherwise returns the
Boolean object false.

<= (operator_less_equal:)

-(FSBoolean*) <= (NSDate *)operand

If the receiver is less than or equal to operand, it returns the Boolean object true, otherwise
returns the Boolean object false.

- (operator_hyphen:)

-(NSNumber*) - (NSDate *)operand

Returns the difference in seconds between the receiver and operand.

F-SCRIPT USER CATEGORY: FSNSDICTIONARY 84

36 FSNSDictionary

Category of: NSDictionary

Declared In: FScript/FSNSDictionary.h

Category Description

This category of NSDictionary adds a Smalltalk shortcut for accessing dictionary contents and
methods for inspecting.

Method Types

Accessing contents -at:

Inspecting -inspect
 -inspectWithSystem:
 -inspectWithSystem:blocks:

Obtaining string representations -printString

Instance Methods

at:

-(id) at:(id)aKey

Returns the value associated with a given key, or nil if no value is associated with the key. This
method is equivalent to objectForKey:.

inspect

-(void) inspect

Open a graphical inspector displaying the elements of the receiver.

inspectWithSystem:

-(void) inspectWithSystem:(FSSystem *)system

Open a graphical inspector displaying the elements of the receiver. When the inspector creates
a block, it does so in the context of the workspace associated with the argument. Typically,
when you call this method from F-Script, you pass the current system object. Example:

#{ 'one' -> 1, 'two' -> 2} inspectWithSystem:sys

F-SCRIPT USER CATEGORY: FSNSDICTIONARY 85

inspectWithSystem:blocks:

-(void) inspectWithSystem:(FSSystem *)system blocks: (NSArray *)blocks

Precondition: blocks is an array of one-arguments or zero-argument blocks.

Open a graphical inspector displaying the elements of the receiver. When the inspector creates
a block, it does so in the context of the workspace associated with system. The inspector uses
the blocks you provides to compute its column’s values.

printString

-(NSString*) printString

Returns a string representation of the receiver, in the syntactic form of a dictionary literal.

F-SCRIPT USER CATEGORY: FSNSFONT 86

37 FSNSFont

Category of: NSFont

Declared In: FScript/FSNSFont.h

Category Description

This category provides inspector support to NSFont objects.

Instance Methods

inspect

-(void) inspect

Opens an inspector displaying the receiver.

F-SCRIPT USER CATEGORY: FSNSIMAGE 87

38 FSNSImage

Category of: NSImage

Declared In: FScript/FSNSImage.h

Category Description

This category provides inspector support to NSImage objects.

Method Types

inspecting -inspect

Instance Methods

inspect

-(void) inspect

Opens an inspector displaying the receiver.

F-SCRIPT USER CATEGORY: FSNSMANAGEDOBJECTCONTEXT 88

39 FSNSManagedObjectContext

Category of: NSManagedObjectContext

Declared In: FScript/FSNSManagedObjectContext.h

Category Description

This category provides inspector support to NSManagedObjectContext objects.

Method Types

inspecting -inspectWithSystem:

Instance Methods

inspectWithSystem:

-(void) inspectWithSystem:(FSSystem *)system

Open a graphical inspector displaying the receiver. When the inspector creates a block, it does
so in the context of the workspace associated with the argument. Typically, when you call this
method from F-Script, you pass the current system object. Example:
aManagedObjectContext inspectWithSystem:sys

F-SCRIPT USER CATEGORY: FSNSMUTABLEARRAY 89

40 FSNSMutableArray

Category of: NSMutableArray

Declared In: FScript/FSNSMutableArray.h

Category Description

This category of NSMutableArray adds a number of methods to the standard NSMutableArray
class, in order to support F-Script's array programming model. See also the FSNSArray
category.

Method Types

Adding elements -add:
 -insert:at:

Removing elements -removeAt:
 -removeWhere:

Setting elements -at:put:
 -where:put:
 -setValue:

Instance Methods

add:

-(void) add:(id)elem

Inserts elem at the end of the receiver.

F-SCRIPT USER CATEGORY: FSNSMUTABLEARRAY 90

at:put:

-(id) at:(id)index put:(id)elem

Precondition: index is an integer in the range [0,receiver count - 1] or (index is an array or

an NSIndexSet containing integers in the range [0,receiver count - 1] and
(elem is an array of the same size or elem is not an array)).

If index is a number, this method replaces the element of the receiver stored at index by elem.

If index is an array of numbers or an NSIndexSet, this method replaces the elements of the
receiver specified by index by the corresponding elements in elem or by elem if elem is not an
array.

This method returns elem.

insert:at:

-(void) insert:(id)elem at:(NSNumber *)index

Precondition: index is an integer in the range [0,receiver count].

Inserts elem into the receiver at index, moving other elements to make room if needed.

removeAt:

-(void) removeAt:(id)index

Precondition: index is an integer in the range [0,receiver count - 1] or an array of integers

in the range [0,receiver count - 1] or an NSIndexSet containing integers in
the range [0,receiver count - 1].

If index is a number, this method removes the element located at index.

If index is an array of numbers or an NSIndexSet, this method removes the elements of the
receiver whose indices before the operation are given in index.

The positions of the remaining elements in the receiver are adjusted to fill the gaps.

removeWhere:

-(void) removeWhere:(NSArray *)booleans

Precondition: booleans is an array of booleans of the same size as the receiver.

This method removes the elements of the receiver whose positional matching element in index
before the operation is true.

The positions of the remaining elements in the receiver are adjusted to fill the gaps.

F-SCRIPT USER CATEGORY: FSNSMUTABLEARRAY 91

setValue:

-(void) setValue: (id)operand

Precondition: operand is an array.

Sets the value of the receiver to that of operand. The receiver becomes an exact copy of
operand.

where:put:

-(FSArray *) where:(NSArray *)booleans put:(id)elem

Precondition: booleans is an array of booleans of the same size as the receiver and elem

is either an array of size s, where s is equal to the number of booleans with
a value of true in booleans, or elem is not an array.

This method replaces the elements of the receiver whose positional matching element in index
is true by the corresponding elements in elem or by elem if elem is not an array.

This method returns elem.

F-SCRIPT USER CATEGORY: FSNSMUTABLEDICTIONARY 92

41 FSNSMutableDictionary

Category of: NSDictionary

Declared In: FScript/FSNSMutableDictionary.h

Category Description

This category of NSDictionary adds a Smalltalk shortcut for setting dictionary entries.

Method Types

Setting entries - at:put:

Instance Methods

at:put:

-(void) at:(id)aKey put:(id)anObject

Precondition: aKey and anObject must not be nil and aKey must conforms to the
NSCopying protocol.

This method is a shortcut for setObject:forKey:. It adds a given key-value pair to the receiver.
The key is copied (using copyWithZone:). If aKey already exists in the receiver, anObject take
the place of the receiver’s previous value object for that key.

F-SCRIPT USER CATEGORY: FSNSMUTABLESTRING

93

42 FSNSMutableString

Category of: NSMutableString

Declared In: FScript/FSNSString.h

Category Description

This category complements the NSMutableString class with user methods for string
manipulations in F-Script.

Method Types

Adding characters -insert:at :

Copying -setValue:

Instance Methods

insert:at:

-(void) insert:(NSString *)str at:(NSNumber *)index

Precondition: index is an integer in the range [0,receiver length].

Inserts the substring str into the receiver at index, moving other characters to make room if
necessary.

setValue:

-(void) setValue: (id)operand

Precondition: operand is a NSString.

Sets the value of the receiver to the value of operand. The receiver becomes an exact copy of
operand.

F-SCRIPT USER CATEGORY: FSNSNUMBER 94

43 FSNSNumber

Category of: NSNumber

Declared In: FScript/FSNSNumber.h

Class Description

This category of NSNumber provides number support.

F-Script provides a literal notation for number objects. The syntax for number literal is:
 {-}<integerPart>{.<decimalPart>}{exponentLetter<exposantIntegerPart>{.<exposantDecimalPar>}}

With exponentLetter ::= ‘e’ | ‘d’ | ’q’

For hexadecimal numbers, the literal syntax is: 16r<integerPart>

Some examples of number literal are: 1 , -3.14, 1e5, 1.23e-2, 16rFF5

The F-Script literal notation generates numbers in double precision.

Operations provided by this category are performed in double precision.

Method Types

Basic operations +
 -
 *
 /

Mathematical functions -abs
 -arcCos
 -arcCosh
 -arcSin
 -arcSinh
 -arcTan
 -arcTanh
 -cos
 -cosh
 -erf
 -erfc
 -exp
 -ln
 -log
 -negated
 -raisedTo:
 -sin
 -sign
 -sinh
 -sqrt
 -tan

F-SCRIPT USER CATEGORY: FSNSNUMBER 95

 -tanh

Getting maximum and minimum of two numbers -max:
 -min:

Getting the remainder -rem:

Rounding up numbers -ceiling
 -floor
 -truncated

Accessing numeric values -fractionPart
 -integerPart

Comparing numbers =
 ~=
 >
 >=
 <
 <=
 -between:and:

Bit manipulation -bitAnd:
 -bitOr:
 -bitXor:

Converting numbers -asDate
 -unicharToString

Generating random numbers -random
 -random:
 -seedRandom

Generating arrays -iota

Control structures -timesRepeat:
 -to:do:
 -to:by:do:

Generating points <>

Instance Methods

+ (operator_plus:)

-(NSNumber*) + (id *)operand

Precondition: operand is a NSNumber or a FSBoolean

If operand is a number, returns the sum of the receiver and operand. If operand is true, returns
the sum of the receiver and 1. If operand is false, returns the sum of the receiver and 0.

F-SCRIPT USER CATEGORY: FSNSNUMBER 96

- (operator_hyphen:)

-(NSNumber*) - (NSNumber *)operand

Returns the difference between the receiver and operand.

* (operator_asterisk:)

-(NSNumber*) * (NSNumber *)operand

Returns the product of the receiver and operand.

/ (operator_slash:)

-(NSNumber*) / (NSNumber *)operand

Precondition: operand ~= 0

Returns the quotient of the receiver and operand.

= (operator_equal:)

-(FSBoolean *) = (id)anObject

Returns whether the receiver and the arguments are equals, as determined by isEqual:.

~= (operator_tilde_equal:)

-(FSBoolean *) ~= (id)anObject

Returns whether the receiver and the arguments are not equals, as determined by isEqual:.

> (operator_greater:)

-(FSBoolean*) > (NSNumber *)operand

If the receiver is greater than operand, returns true, otherwise returns false.

>= (operator_greater_equal:)

-(FSBoolean*) >= (NSNumber *)operand

If the receiver is greater than or equal to operand, returns true, otherwise returns false.

< (operator_less:)

-(FSBoolean*) < (NSNumber *)operand

If the receiver is less than operand, returns true, otherwise returns false.

F-SCRIPT USER CATEGORY: FSNSNUMBER 97

<= (operator_less_equal:)

-(Boolean*) <= (NSNumber *)operand

If the receiver is less or equal than operand, returns true, otherwise returns false.

<> (operator_less_greater:)

-(NSPoint) <> (NSNumber *)operand

Precondition: receiver and operand must be in the range [-FLT_MAX, FLT_MAX].

Returns a point whose coordinates are the receiver value for x and operand value for y.

abs

-(NSNumber*) abs

Returns the absolute value of the receiver.

arcCos

-(NSNumber*) arcCos

Precondition: receiver between:-1 and:1

Returns the arccosinus of the receiver (a number whose cosinus is equal to the receiver) in
radians. The result of this method is in the range [0 , pi].

arcCosh

-(NSNumber*) arcCosh

Precondition: receiver >= 1

Returns the principle value of the inverse hyperbolic cosine of the receiver. The result of this
method is in the range [0 , +infinity].

arcSin

-(NSNumber*) arcSin

Precondition: receiver between:-1 and:1

Returns the arcsinus of the receiver (a number whose sinus is equal to the receiver) in
radians. The result of this method is in the range [-pi/2 , pi/2].

F-SCRIPT USER CATEGORY: FSNSNUMBER 98

arcSinh

-(NSNumber*) arcSinh

Returns the inverse hyperbolic sine of the receiver.

arcTan

-(NSNumber*) arcTan

Returns arctangent of the receiver (a number whose tangent is equal to the receiver) in
radians. The result of this method is in the range [-pi/2 , pi/2].

arcTanh

-(NSNumber*) arcTanh

Precondition: (receiver > -1) & (receiver < 1)

Returns the inverse hyperbolic tangent of the receiver.

asDate

-(NSDate*) asDate

Takes the receiver as a time interval in seconds and returns a NSDate object representing the
date with this time interval from a system reference Date.

bitAnd:

-(NSNumber *)bitAnd:(NSNumber *)operand

Precondition: receiver and operand must be integers in the range [0, UINT_MAX].

Answer the result of the bit-wise logical AND of the binary representation of the receiver and
the binary representation of operand.

F-SCRIPT USER CATEGORY: FSNSNUMBER 99

bitOr:

-(NSNumber *)bitOr:(NSNumber *)operand

Precondition: receiver and operand must be integers in the range [0, UINT_MAX].

Answer the result of the bit-wise logical OR of the binary representation of the receiver and the
binary representation of operand.

bitXor:

-(NSNumber *)bitXor:(NSNumber *)operand

Precondition: receiver and operand must be integers in the range [0, UINT_MAX].

Answer the result of the bit-wise exclusive OR of the binary representation of the receiver and
the binary representation of operand.

between:and:

-(FSBoolean *) between:(NSNumber *)inf and:(NSNumber *)sup

Returns true if the receiver is greater than or equal to inf and less than or equal to sup,
otherwise returns false. Note that "a between:b and:c" differs from "a >= b & (a <= c)" and
from "a >= b & [a <= c]" in that it prevents a from being evaluated twice, which is important if a
is a complex or not-side-effect-free expression.

ceiling

-(NSNumber*) ceiling

Returns the smallest integer that is greater than or equal to the receiver.

cos

-(NSNumber*) cos

Returns the cosinus of the receiver in radians.

cosh

-(NSNumber*) cosh

Returns the hyperbolic cosinus of the receiver in radians.

erf

-(NSNumber*) erf

Returns the error function of the receiver.

F-SCRIPT USER CATEGORY: FSNSNUMBER 100

erfc

-(NSNumber*) erfc

Returns the complementary error function of the receiver.

floor

-(NSNumber*) floor

Returns the greatest integer that is less than or equal to the receiver.

fractionPart

-(NSNumber*) fractionPart

Returns the fraction part of the receiver (e.g., the fraction part of 12.3456e2 is 0.56).

integerPart

-(NSNumber*) integerPart

Returns the integer part of the receiver (e.g., the integer part of 12.3456e2 is 1234).

iota

-(FSArray *) iota

Precondition: receiver >= 0 & receiver <= UINT_MAX

Returns an array with all the integers between 0 and the receiver-1. For example, "5 iota"
returns {0,1,2,3,4}.

Generates an error (i.e. raise an exception) if there is not enough memory to complete the
operation.

ln

-(NSNumber*) ln

Precondition: receiver > 0

Returns the natural logarithm of the receiver.

F-SCRIPT USER CATEGORY: FSNSNUMBER 101

log

-(NSNumber*) log

Precondition: receiver > 0

Returns the logarithm base 10 of the receiver.

max:

-(NSNumber*)max:(NSNumber *)operand

Returns the receiver if it is greater than operand. Otherwise returns operand.

min:

-(NSNumber*)min:(NSNumber *)operand

Returns the receiver if it is less than operand. Otherwise returns operand.

negated

-(NSNumber*)negated

Returns a number equal to zero minus the receiver.

random

-(NSNumber*)random

Precondition: receiver >= 1 & (receiver < 2147483648)
(note: 2147483648 is equal to 2 raisedTo:31)

Returns a random integer between 0 and the receiver - 1 (e.g., "5 random" will return either
0,1, 2, 3, or 4).

Internally, this method use the random() UNIX function as a source of pseudo-random
numbers.

See also: -random: -seedRandom

F-SCRIPT USER CATEGORY: FSNSNUMBER 102

random:

-(FSArray*)random:(NSNumber *)operand

Precondition: (receiver >= operand) & (operand between:0 and:UINT_MAX) & (receiver

fractionPart = 0) & (operand fractionPart = 0)

Returns an array of size equal to operand, of random integers between 0 and the receiver - 1.
All the elements of the result have a different value and are returned in a random order.

Internally, this method use the random() and drand48() UNIX functions as a source of pseudo-
random numbers.

Example: give me five different integers randomly chosen in the interval [0,9].

> 10 random:3
{4, 9, 2}

Example: give me a random permutation of the integers between [0,9].

> 10 random:10
{2, 4, 0, 5, 3, 6, 1, 9, 7, 8}

See also: -random -seedRandom

raisedTo:

-(NSNumber*) raisedTo: (NSNumber *)operand

Precondition: (receiver = 0 & (operand <= 0)) not & (receiver < 0 & (operand fractionPart

~= 0)) not

Returns the receiver raised to the power operand.

rem:

-(NSNumber*)rem:(NSNumber *)operand

Precondition: operand ~= 0

Returns the remainder of the division of the receiver by operand. The sign of the remainder is
the same sign as the receiver.

F-SCRIPT USER CATEGORY: FSNSNUMBER 103

seedRandom

-(NSNumber*)seedRandom

Precondition: receiver <= ULONG_MAX

Sets the value of the receiver as the seed for a new sequence of pseudo-random numbers to
be used by -random and -random: to compute their results. These sequences are repeatable
by invoking -seedRandom on the same seed value.

This method calls the srand48() and srandom() UNIX functions as part of its implementation.
Note that, at launch time, the F-Script application automatically initialize the random() and
drand48() seeds with random values. This automatic initialization does not take place when
using the F-Script framework in another application.

See also: -random -random:

sin

-(NSNumber*) sin

Returns the sinus of the receiver in radians.

sign

-(NSNumber*) sign

Answer the sign of the receiver: answer 1 if the receiver is positive, 0 if the receiver equals 0,
and -1 if it is negative.

sinh

-(NSNumber*) sinh

Returns the hyperbolic sinus of the receiver in radians.

sqrt

-(NSNumber*) sqrt

Precondition: receiver >= 0

Returns the square root of the receiver.

tan

-(NSNumber*) tan

Returns the tangent of the receiver in radians.

F-SCRIPT USER CATEGORY: FSNSNUMBER 104

tanh

-(NSNumber*) tanh

Returns the hyperbolic tangent of the receiver in radians.

timesRepeat:

-(void) timesRepeat:(FSBlock *)operation

Precondition: operation argumentCount = 0 & (receiver >= 0) & (receiver fractionPart = 0)

Evaluate operation the number of times represented by the receiver.

to:by:do:

- (void) to:(NSNumber *)stop by:(NSNumber *)step do:(FSBlock *)operation

Precondition: operation argumentCount <= 1 & (step != 0)

Evaluates operation for each element of an interval, starting at the receiver and ending at stop,
where each element is a step greater than the previous. The value of step may be positive or
negative but it must be non-zero.
The block operation is given a number as argument. This number represents the current
element of the iteration.

No evaluation takes place if:

1. receiver < stop, and step < 0
2. receiver > stop, and step > 0

to:do:

- (void) to:(NSNumber *)stop do:(FSBlock *)operation

Precondition: operation argumentCount <= 1

Evaluates operation for each element of an interval starting at the receiver and ending at stop,
where each element is 1 greater than the previous. No evaluation takes place if the receiver is
greater than stop.
The block operation is given a number as argument, representing the current element of the
iteration.

Examples:

“Compute into count the sum of all the integers from 1 to 10“

count := 0. 1 to:10 do:[:i| count := count + i]

“Construct in a an array with all the integers from 1 to 10“

a := {}. 1 to:10 do:[:i| a add:i]

F-SCRIPT USER CATEGORY: FSNSNUMBER 105

truncated

-(NSNumber*) truncated

Answer an integer equal to the receiver truncated towards zero.

If the receiver is positive, answer the largest integer less than or equal to the receiver. If it is
negative, answer the smallest integer greater or equal to the receiver.

unicharToString

- (NSString *) unicharToString

Precondition: receiver between:0 and:65535

Returns a string made up of one character whose encoding value in UNICODE is the value of
the receiver. For example, 97 unicharToString will return the string ‘a’ because the encoding
value for the character a in UNICODE is 97. This method is particularly useful when dealing
with Cocoa methods which return a unichar, as the returned unichar is represented by a
number in F-Script.

F-SCRIPT USER CATEGORY: FSNSOBJECT

106

44 FSNSObject

Category of: NSObject

Declared In: FScript/FSNSObject.h

Category Description

The FSNSObject category provides various services.

Method Types

Identifying classes classOrMetaclass

Testing for identity ==
 ~~

Creating associations ->

Saving onto a file -save
 -save:

Enclosing in an array -enlist
 -enlist:

Obtaining String representations -printString

Instance Methods

== (operator_equal_equal:)

-(FSBoolean *) == (id)operand

Returns true if the receiver and operand are identical, otherwise returns false. Two objects are
identical if they are the same objects in memory (pointer equality).

~~ (operator_tilde_tilde:)

-(FSBoolean *) ~~ (id)operand

Returns false if the receiver and operand are identical, otherwise returns true. Two objects are
identical if they are the same objects in memory (pointer equality).

F-SCRIPT USER CATEGORY: FSNSOBJECT

107

-> (operator_hyphen_greater:)

-(id) -> (id)operand

Returns an FSAssociation object with receiver as the key and operand as the value.

classOrMetaclass

-(Class) classOrMetaclass

Return the class object for the receiver's class. This method works the same for instances and
classes. This means that if the receiver is a class, the returned object will be the class of the
receiver (i.e. a meta-class). This differs from the +class method, which returns the receiver
itself.

enlist

-(FSArray *) enlist

Creates an array, puts the receiver into it and returns it.

Generates an error (i.e. raise an exception) if there is not enough memory to complete the
operation.

enlist:

-(FSArray *) enlist:(NSNumber *)operand

Returns an array equal in size to operand, and with all slots referencing the receiver. For
example: 'foo' enlist:3 returns {'foo', 'foo', 'foo'}.

printString

-(NSString *) printString

Returns a string representation of the receiver. This method is called by F-Script to display
objects and is also available for direct calling. To compute its result, the default implementation
provided by FSNSObject uses the string returned by the debugDescription method, if
available, or else by the description method.

See also: -description (NSObject)

save

-(void) save

Asks the user for a filename, then saves the object onto this file by calling save:. An exception
is raised if the archiving process fails (among other things, this includes failure due to I/O
problems).

F-SCRIPT USER CATEGORY: FSNSOBJECT

108

save:

-(void) save:(NSString *)filename

Saves the receiver on the file named filename, using Cocoa archiving (i.e. using NSArchiver).
The archiving process should be specified by the receiver class documentation (specifically,
what is archived should be specified), if it is not obvious.

An exception is raised if the archiving process fails (among other things, this includes failure
due to I/O problems).

This method is based on the Cocoa archiving mechanism. Note that if an object in the object
graph being archived does not conform to the Cocoa NSCoding protocol, an instance of
NSNull is archived in place of this object.

F-SCRIPT USER CATEGORY: FSNSSTRING

109

45 FSNSString

Category of: NSString

Declared In: FScript/FSNSString.h

Category Description

This category complements the NSString class.

A string literal has the form: 'I am a String'. Such a literal generates an NSString (non-
mutable). You can use '' (two quote characters) in a string body to embed a quote.

In addition, F-Script provides C-like escape sequences. These sequences are interpreted in a
special way when submitted to the F-Script interpreter in a string literal. What follows is a list of
the recognized escape sequences (note that other usages of \ in a string literal submitted to
the F-Script compiler are not permitted).

SEQUENCE INTERPRETED AS
\a audible alert BEL
\b backspace BS
\f formfeed FF
\n newline NL
\r carriage return CR
\t horizontal tab HT
\v vertical tab VT
\\ backslash \
\' quote '

The method unicharToString, defined on NSNumbers by the FSNSNumber category, lets
you create a string made up of one character whose encoding value in UNICODE is the value
of the receiver. For example, 97 unicharToString will return the string 'a' because the
encoding value for the character a in UNICODE is 97. This method used in conjunction with
the concatenation operator (i,e,. ++) makes it easy to create strings containing any UNICODE
characters.

Method Types

Generating blocks from strings -asBlock
 -asBlockOnError:

Indexing at:

Comparing =
 ~=
 >
 >=
 <
 <=

F-SCRIPT USER CATEGORY: FSNSSTRING

110

Array conversion -asArray

 -asArrayOfCharacters

Getting classes from strings -asClass

Creating dates from strings -asDate

Reversing -reverse

Concatenation ++

Obtaining string representations -printString

Instance Methods

= (operator_equal:)

-(FSBoolean *) = (id)anObject

Returns whether the receiver and the arguments are equals, as determined by isEqual:.

~= (operator_tilde_equal:)

-(FSBoolean *) ~= (id)anObject

Returns whether the receiver and the arguments are not equals, as determined by isEqual:.

> (operator_greater:)

-(FSBoolean*) > (NSString *)operand

If the receiver is greater than operand, returns true, otherwise returns false.

>= (operator_greater_equal:)

-(FSBoolean*) >= (NSString *)operand

If the receiver is greater than or equal to operand, returns true, otherwise returns false.

< (operator_less:)

-(FSBoolean*) < (NSString *)operand

If the receiver is less than operand, returns true, otherwise returns false.

<= (operator_less_equal:)

-(FSBoolean*) <= (NSString *)operand

If the receiver is less than or equal to operand, returns true, otherwise returns false.

F-SCRIPT USER CATEGORY: FSNSSTRING

111

++ (operator_plus_plus:)

-(NSString *) ++ (NSString *)operand

The concatenation method. Returns a NSString which is the concatenation of the receiver and
operand. Both the receiver and operand remain unchanged.

'foo' ++ 'bar' returns 'foobar'

asArray

-(FSArray *) asArray

Returns an array of strings where each string represents a glyph of the receiver. This method
takes into account Unicode composed character sequences.

asArrayOfCharacters

-(FSArray *) asArrayOfCharacters

Returns an array of strings where each string represents a character of the receiver.

asBlock

-(FSBlock *) asBlock

Creates and returns a block whose source is taken from the receiver. The receiver must
represent a block literal. If there is a syntax error, this method generates an F-Script execution
error (i.e., raises an exception).

Note that each block created by this method is in charge of its own top-level workspace. The
lifecycle of this workspace is closely related to the lifecycle of the block. Since it is possible for
the block to create other blocks in its workspace and to enable them to be held for later
execution, problems may arise if you try to execute a block whose workspace was controlled
by a block that has been deallocated. Thus, you must ensure that the block in charge of a
workspace is not deallocated until the workspace is no longer needed.

See also the -blockFromString: method in class FSSystem.

asBlockOnError:

-(id)asBlockOnError:(FSBlock*)errorBlock

Creates and returns a block whose source is taken from the receiver. The receiver must
represent a block literal. If there is a syntax error, errorBlock is executed with three arguments:
a NSString with the error message, a number with the starting position of the syntax and a
number with the final position of the syntax error. The result of the errorBlock execution is then
returned. (See also the -blockFromString:onError: method in class FSSystem.)

Note that each block created by this method is in charge of its own top-level workspace. The
lifecycle of this workspace is closely related to the lifecycle of the block. Since it is possible for
the block to create other blocks in its workspace and to enable them to be held for later

F-SCRIPT USER CATEGORY: FSNSSTRING

112

execution, problems may arise if you try to execute a block whose workspace was controlled
by a block that has been deallocated. Thus, you must ensure that the block in charge of a
workspace is not deallocated until the workspace is no longer needed.

asClass

-(id) asClass

Returns the class whose name is in the receiver, or nil if no class matches the receiver. This
method gives access to all the classes linked to the running application.

asDate

-(NSDate *) asDate

Interprets the receiver as a date specification (using the natural language interpreter) and
returns the relevant date object.

at:

-(id) at:(id)operand

Precondition: operand is an integer in the range [0,receiver length-1].

Returns an NSString formed by the character of the receiver at index operand. In F-Script,
indexing starts with zero as in Objective-C.

max:

-(NSString *)max:(NSString *)operand

Returns the maximum of the receiver and operand. Does not create a new NSString object.
Returns either the receiver or operand.

min:

-(NSString *)min:(NSString *)operand

Returns the minimum of the receiver and operand. Does not create a new NSString object.
Returns either the receiver or operand.

printString

-(NSString *) printString

Returns an NSString representation of the receiver.

F-SCRIPT USER CATEGORY: FSNSSTRING

113

reverse

-(NSString *) reverse

Returns a string with the same characters as the receiver, but in reverse order.

'bingo' reverse returns 'ognib'

F-SCRIPT USER CATEGORY: FSNSVALUE 114

46 FSNSValue

Category of: NSValue

Declared In: FScript/FSNSValue.h

Category Description

This category complements the NSValue class. In particular, it supports NSRange, NSPoint,
NSRect and NSSize manipulation.

Method Types

String representation -printString

Testing for equality =
 ~=

Range +rangeWithLocation:length:
 -length
 -location

Point -corner:
 -extent:
 -x
 -y

Rectangle -corner
 -extent
 -origin

Size +sizeWithWidth:height:
 -height
 -width

Class Methods

sizeWithWidth:height:

+(NSSize) sizeWithWidth:(CGFloat)width height:(CGFloat)height

Returns a size with the specified width and height.

F-SCRIPT USER CATEGORY: FSNSVALUE 115

rangeWithLocation:length:

+(NSRange) rangeWithLocation:(NSUInteger)location length:(NSUInteger)length

Returns a range with the specified location and length.

Instance Methods

= (operator_equal:)

-(FSBoolean *) = (id)anObject

Returns whether the receiver and the arguments are equals, as determined by isEqual:.

~= (operator_tilde_equal:)

-(FSBoolean *) ~= (id)anObject

Returns whether the receiver and the arguments are not equals, as determined by isEqual:.

corner:

-(NSRect) corner:(NSPoint)operand

Precondition: Receiver contains an NSPoint and operand’s x coordinates is greater or

equal to receiver’s x coordinate and operand’s y coordinates is greater or
equal to receiver’s y coordinate.

Returns a rectangle whose origin is the receiver, and whose opposite corner is operand.

extent

-(NSPoint) extent

Precondition: Receiver contains an NSRect.

Returns a point that represents the extent of the receiver. The width and height of a rectangle
form what we call the extent.

extent:

-(NSRect) extent:(NSPoint)operand

Precondition: Receiver contains an NSPoint and operand coordinates are non-negatives.

Returns a rectangle whose origin is the receiver, and whose width and height are provided by
operand.

F-SCRIPT USER CATEGORY: FSNSVALUE 116

height

-(CGFloat) height

Precondition: Receiver contains an NSSize.

Returns the height.

length

-(NSUInteger) length

Precondition: Receiver contains an NSRange.

Returns the length.

location

-(NSUInteger) location

Precondition: Receiver contains an NSRange.

Returns the location.

origin

-(NSPoint) origin

Precondition: Receiver contains an NSRect.

Returns a point that represents the origin of the receiver.

printString

-(NSString*) printString

Returns a string representation of the receiver.

width

-(CGFloat) width

Precondition: Receiver contains an NSSize.

Returns the width.

F-SCRIPT USER CATEGORY: FSNSVALUE 117

x

-(CGFloat) x

Precondition: Receiver contains an NSPoint.

Returns the value of the x coordinate.

y

-(CGFloat) y

Precondition: Receiver contains an NSPoint.

Returns the value of the y coordinate.

F-SCRIPT USER CATEGORY: FSNUMBER 118

47 FSNumber

Inherits From: NSNumber

Declared In: FScript/FSNumber.h

Class Description

FSNumber is a concrete subclass of the NSNumber class cluster. A FSNumber object holds a
double C type number, so it provides the same precision as the "double" C type of the
platform used. FSNumber provides an optimized implementation of the methods defined by
NSNumber and its FSNSNumber category.

F-SCRIPT USER CLASS: FSOBJECTPOINTER 119

48 FSObjectPointer

Inherits From: FSPointer

Conforms To: NSObject (NSObject)

Declared In: FScript/FSObjectPointer.h

Class Description

An FSObjectPointer denotes the location of a memory zone containing objects.

Method Types

Dereferencing - at:
 - at:put:

Instance Methods

at:

-(id) at:(id)index

Precondition: index is an NSNumber representing a positive integer and is a valid offset for
dereferencing the pointer.

Dereferences the pointer, using index as the offset, and returns the value of the corresponding
memory zone.

at:put:

-(id) at:(id)index put:(id)elem

Precondition: index is an NSNumber representing a positive integer and is a valid offset for
dereferencing the pointer.

Dereferences the pointer, using index as the offset, and put elem in the corresponding
memory zone. Retains elem, and release the replaced object.

F-SCRIPT USER CLASS: FSPOINTER 120

49 FSPointer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: FScript/FSPointer.h

Class Description

FSPointer is a semi-abstract class that provides an interface for dealing with C pointers in F-
Script. In practice, you will use instances of either FSGenericPointer or FSObjectPointer, the
two concrete subclasses of FSPointer.

An FSPointer represents a memory address. FSPointer objects are used to represent C
pointers in F-Script. When a method returns a C pointer (other than an object) it is
automatically mapped to an FSGenericPointer object. When calling, from F-Script, a method
that takes a C pointer as an argument (other than an object), the FSPointer object you provide
(either an FSGenericPointer or an FSObjectPointer) is automatically mapped to a C pointer
that is passed to the method. The NULL pointer is mapped to nil and vice-versa.

When you invoke, from F-Script, a method that takes a C pointer (other than an object) as
argument you can pass an FSObjectPointer if the C pointer points to a memory zone
containing objects. In other cases, you must use pass an FSGenericPointer.

Example:

Given the following method:

- (void) method1:(NSNumber **)p
{
 // Replace the NSNumber referenced by p by a new NSNumber
 // with a value that is the double of the original one.

 *p = [NSNumber numberWithDouble:[*p doubleValue] * 2];
}

You can interact with it from F-Script like this:

> myPointer := FSPointer objectPointer

> myPointer at:0 put:22
22

> myObject method1:myPointer

> myPointer at:0
44

FSGenericPointer and FSObjectPointer differ on the following points:

 An FSGenericPointer object can stand for a C pointer pointing to any type of data.
On the contrary, an FSObjectPointer can only stand for a C pointer pointing to one
(or more) object(s).

F-SCRIPT USER CLASS: FSPOINTER 121

 When running in non-GC mode (i.e., without the Objective-C garbage collector),
an FSObjectPointer will automatically free its memory zone on deallocation. On
the contrary, by default, an FSGenericPointer will not automatically free its
memory zone. You can change this behavior by sending the message
setFreeWhenDone:YES to an FSGenericPointer. You can also explicitly ask an
FSGenericPointer to free its memory zone by sending the free message. Note
that a given FSPointer object must not be asked twice to free its memory zone (an
exception will be raised).

 When running in non-GC mode, when the method at:put: is invoked on an
FSObjectPointer to put an object in the memory zone referenced by the
FSObjectPointer, the object is automatically retained and the replaced object is
automatically released.

 When running in non-GC mode, when an FSObjectPointer is passed as argument
to a method that takes a C pointer, all the objects in the memory zone referenced
by the FSObjectPointer are automatically autoreleased before the execution of the
method. All the objects present in this memory zone after the execution of the
method are automatically retained.

 When running in non-GC mode, on deallocation, an FSObjectPointer release all
the objects present in the memory zone it points to.

This somewhat complex behavior of FSObjectPointer when running in non-GC mode ensures
that the lifetime of the pointed objects is extended enough to provide a good user experience
during interactive sessions.

Method Types

Creating instances + allocateCollectable:
 + allocateCollectable:options:
 + malloc:
 + objectPointer
 + objectPointer:

Getting the C pointer - cPointer

Getting the memory address as a NSNumber - address

Testing for equality - isEqual:
 - =
 - ~=

F-SCRIPT USER CLASS: FSPOINTER 122

Class Methods

allocateCollectable:

+(FSGenericPointer *) allocateCollectable:(NSUInteger)size

Equivalent to +allocateCollectable:options: with 0 for options.

allocateCollectable:options:

+(FSGenericPointer *) allocateCollectable:(NSUInteger)size
 options:(NSUInteger)options

This method allocates a collectable memory zone of size size with the NSAllocateCollectable()
function , passing it the given options. It then creates and returns an FSGenericPointer
instance pointing to this zone, or nil if the memory cannot be allocated. If you want to pass 0 as
option (which means that the memory zone is not scanned for pointers by the garbage
collector), you might prefer to invoke the shorter convenience method allocateCollectable:.
To allocate scanned memory (i.e., memory the garbage collector will look into for pointers),
pass the NSScannedOption.
See the documentation for NSAllocateCollectable(), a function provided by the Foundation Kit,
for the complete description of available options.

malloc:

+(FSGenericPointer *) malloc:(size_t)size

Allocates a memory zone of size with the C malloc() function, then creates and returns an
FSGenericPointer instance pointing to this zone, or nil if the memory cannot be allocated. It is
up to you to free the zone (see the FSGenericPointer class).

objectPointer

+(FSObjectPointer *) objectPointer

Equivalent to a call to +objectPointer: with 1 as argument.

objectPointer:(size_t)count

+(FSObjectPointer *) objectPointer:(size_t) count

Allocates a memory zone large enough to contain count object pointers. The
NSAllocateCollectable() function is used for allocating collectable and scanned memory if
running in GC mode. The memory zone is initialized with nil values. Creates and returns an
FSObjectPointer instance pointing to this zone, or nil if the memory cannot be allocated.
The memory zone will be freed on deallocation of the returned FSObjectPointer if running in
non-GC mode, and will be freed by the garbage collector if running in GC mode.

F-SCRIPT USER CLASS: FSPOINTER 123

Instance Methods

= (operator_equal:)

-(FSBoolean *) = (id)anObject

Returns whether the receiver and the arguments are equals, as determined by isEqual:.

~= (operator_tilde_equal:)

-(FSBoolean *) ~= (id)anObject

Returns whether the receiver and the arguments are not equals, as determined by isEqual:.

address

-(NSNumber *) address

Returns, in a NSNumber, the memory address represented by the receiver.

cPointer

-(void *) cPointer

Returns, as a void *, the memory address represented by the receiver.

 isEqual:

@protocol NSObject
-(BOOL) isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A FSPointer is
considered equal to another object if the other object is a FSPointer instance and if the C
pointers represented by the two FSPointer objects are equals.

 124

50 FSSystem

Inherits From: NSObject

Conforms To: NSCoding

NSCopying
NSObject (NSObject)

Declared In: FScript/FSSystem.h

Class Description

A FSSystem object is a special object that gives users of F-Script an interface to some
services of the interpreter. A predefined F-Script identifier called sys gives access to a system
object from F-Script interactive sessions. This object can be viewed as a handler to the current
interpreter.

Method Types

Creating blocks from strings -blockFromString:
 -blockFromString:onError:

Loading an object from a file -load
 -load:

Getting defined variables' names -identifiers

Undefining variables - clear
 - clear:

Copying -setValue:

Beeping -beep

Performing the internal test suite -ktest

Installing the Flight tutorial -installFlightTutorial

Opening an object browser -browse
 -browse:

Attaching a managed object context -attach:

 125

Instance Methods

attach:

-(void)attach:(id)managedObjectContext

For each entity associated with the managed object context, this method defines, in the
workspace associated with the receiver, an array which is given the same name as the entity
and which contains all the managed objects corresponding to the entity at the time of
invocation.

For instance, if myObjectContext is a managed object context associated with an
Employee entity and a Department entity, then, after executing:

 sys attach:myObjectContext

the F-Script workspace will contains two new arrays, named Employee and Department.
These arrays will contain the managed objects for their corresponding entities: the Employee
array will contain all the employees and the Department array will contain all the
departments.

This method is likely to bring in memory the whole persistent object graph associated with the
object context. In practice this should not be a problem, unless you deal with very big data-
sets. In such cases you should avoid using this method.

Note that the attach: method is just a convenience method. You still have full access to the
Core Data framework and can use its various APIs to get access to managed objects.

beep

-(void)beep

Plays the system beep by calling NSBeep().

blockFromString:

-(id)blockFromString:(NSString*)source

Creates and returns a block described in source. The source string should represent a block
literal. If there is a syntax error in source, an F-Script execution error is generated. The new
block is set to have the top-level environment of the interpreter – represented by the receiver –
as its parent environment.

 126

blockFromString:onError:

-(id)blockFromString:(NSString*)source onError:(FSBlock*)errorBlock

Creates and returns a block described in source. The source string should represent a block
literal. If there is a syntax error in source, errorBlock is executed with three arguments: an
NSString with the error message, a number with the starting position of the syntax error in
source and a number with the final position of the syntax error in source; the result of the
errorBlock execution is then returned.
The new block is set to have the top-level environment of the interpreter – represented by the
receiver – as its parent environment.

browse

-(void) browse

Open a graphical object browser for the objects defined at the global level of the F-Script
interpreter represented by the receiver.

browse:

-(void) browse:(id)anObject

Open a graphical object Browser on anObject.

clear

-(void) clear

Remove (i.e., undefine) all user-defined variables from the workspace.

clear:

-(void) clear:(NSString *)identifier

Precondition: identifier contains the name of a user-defined variable.

Remove from the workspace (i.e., undefine) the variable whose name is passed in identifier.
Raise an exception if you try to remove a variable that is not in the workspace or a non user-
defined variable, such as sys.

 127

ktest

-(id) ktest

Performs an internal test suite. Returns the result in a string.

installFlightTutorial

-(void) installFlightTutorial

Installs or reinstalls the "Flight" tutorial. This may create some objects in the workspace.

load

-(id) load

Asks the user for a file name then loads and returns the object stored in it. An exception is
raised if the loading process fails.

load:

-(id) load:(NSString*)filename

Loads and returns the object stored in the file called filename. An exception is raised if the
loading process fails.

setValue:

-(void) setValue: (id)operand

Precondition: operand is a FSSystem.

Sets the value of the receiver to the value of operand.

 128

51 FSVoid

Inherits From: NSObject

Conforms To: NSCoding

NSCopying
NSObject (NSObject)

Declared In: FScript/FSVoid.h

Class Description

In F-Script, a method invocation always yields an object (except when an exception is raised).
When invoking a method that returns nothing (denoted by the keyword void in the method
signature), the F-Script messaging system returns an instance of FSVoid as the result of the
method.

A FSVoid object cannot do anything useful.

There is usually only one instance of FSVoid per application. It can be obtained by using the
+fsVoid method.

Method Types

Obtaining the shared instance +fsVoid

String representation -printString

Class Methods

fsVoid

+ fsVoid

Returns the shared instance of FSVoid.

Instance Methods

printString

-(NSString*) printString

Returns a string representation of the receiver. This is an empty string.

F-SCRIPT USER CLASS: FSNUMBER 129

52 FSNumber

Inherits From: NSNumber

Declared In: FScript/FSNumber.h

Class Description

FSNumber is a concrete subclass of the NSNumber class cluster. A FSNumber object holds a
double C type number, so it provides the same precision as the "double" C type of the
platform used. FSNumber provides an optimized implementation of the methods defined by
NSNumber and its FSNSNumber category.

 130

API for ObjC Programmers

PROGRAMMER API: FSCRIPTMENUITEM 131

53 FScriptMenuItem

Inherits From: NSMenuItem

Conforms To: NSMenuItem (NSMenuItem)

NSObject (NSObject)

Declared In: FScript/FScriptMenuItem.h

Class Description

This subclass of NSMenuItem lets you easily embed a complete F-Script environment into an
application. Each FScriptMenuItem instance has its own F-Script interpreter and contains a
submenu that provides access to the standard F-Script user interface elements. From an
FScriptMenuItem, the user can access an F-Script console, open object browsers and open
the F-Script preference panel.

Typically, an FScriptMenuItem is initialized with the init method. Then, it can be inserted into
an existing menu. For instance, the following Objective-C code adds an F-Script menu to the
main menu of the application:

[[NSApp mainMenu] addItem:[[[FScriptMenuItem alloc] init] autorelease]];

An FScriptMenuItem is associated with an FSInterpreterView (which is used by the console
window). You use the interpreterView method to access the FSInterpreterView. From the
FSInterpreterView, you can programmatically access the associated FSInterpreter.

Method Types

Getting the interpreter view -interpreterView

Instance Methods

interpreterView

-(FSInterpreterView *) interpreterView

Returns the FSInterpreterView object associated with the receiver.

PROGRAMMER API: FSINTERPRETER 132

54 FSInterpreter

Inherits From: NSObject

Conforms To: NSCoding

NSObject (NSObject)

Declared In: FScript/FSInterpreter.h

Class Description

An instance of this class is an F-Script interpreter. You can ask it to execute instructions given
in a string.

This class allows you to programmatically integrate an F-Script interpreter into your own
project.

Each interpreter manages its own workspace. The F-Script code passed to the “execute:”
method is executed in the context of this workspace.

The lifecycle of a workspace is closely related to the lifecycle of the associated interpreter.
Since it is possible to create block objects in a workspace and to enable them to be held for
later execution, problems may arise if you try to execute a block whose workspace was
controlled by an interpreter that has been deallocated. Thus, you must ensure that the
interpreter in charge of a workspace is not deallocated until the workspace is no longer
needed.

Method Types

 Creating an interpreter +interpreter
 -init

Validating syntax +validateSyntaxForIdentifier:

Executing F-Script instructions -execute:

Managing variables -objectForIdentifier:found:
 -setObject:forIdentifier:
 -identifiers

Journaling -setJournalName:
 -setShouldJournal:

 -shouldJournal

Opening an object browser -browse
 -browse:

PROGRAMMER API: FSINTERPRETER 133

Class Methods

interpreter

+(FSInterpreter) interpreter

Creates and returns an interpreter.

validateSyntaxForIdentifier:

+(BOOL) validateSyntaxForIdentifier:(NSString *)identifier

Returns whether identifier fits the F-Script syntax for identifiers.

Instance Methods

browse

-(void) browse

Open a graphical object browser for the objects defined at the global level of the interpreter.

browse:

-(void) browse:(id)anObject

Open a graphical object browser on anObject.

execute:

-(FSInterpreterResult *) execute:(NSString *)command

Executes the F-Script code in command.

identifiers

-(NSArray *) identifiers

Returns the list of the identifiers defined in the top-level environment of the interpreter. The list
is returned as an array of NSString objects. Note that this does not include pre-defined
identifiers like class names or Cocoa constants.

init

-(id) init

Initializes a newly allocated interpreter.

PROGRAMMER API: FSINTERPRETER 134

objectForIdentifier:found:

-(id)objectForIdentifier:(NSString *)identifier found:(BOOL *)found

Returns the object associated with identifier in the top-level environment (i.e. namespace) of
the interpreter. Put YES if identifier is defined, put NO otherwise, in the BOOL pointed by
found. You can pass NULL for found if you don’t need it.

setJournalName

- (BOOL)setJournalName:(NSString *)filename

Sets the name of the journal file to filename.

setObject:forIdentifier:

-(void)setObject:(id)object forIdentifier:(NSString *)identifier

Defines identifier in the top-level environment (i.e. namespace) of the interpreter and
associates it with object.

setShouldJournal:

- (void)setShouldJournal:(BOOL)shouldJournal

If shouldJournal is YES, future commands received by the interpreter will be recorded in the
journal file. If shouldJournal is NO, future commands will not be recorded.

shouldJournal

-(BOOL)shouldJournal

Returns YES if journaling is currently enabled, otherwise returns NO.

PROGRAMMER API: FSINTERPRETERRESULT 135

55 FSInterpreterResult

Inherits From: NSObject

Conforms To: NSCoding

NSObject (NSObject)

Declared In: FScript/FSInterpreterResult.h

Class Description

An instance of this class represents the result of the execution of some F-Script code.
Typically, you get an FSInterpreterResult by sending the execute: message to an
FSInterpreter or the executeWithArguments: message to a block. You can then query the
FSInterpreterResult to find out if the execution raised an error or not, and get the result of the
execution or an error description.

Method Types

Querying status -isOK
 -isExecutionError
 -isSyntaxError

Getting the results of the executions -result

Getting error descriptions -errorMessage
 -errorRange

Showing the call stack to the user -inspectBlocksInCallStack

Instance Methods

errorMessage

-(NSString *) errorMessage

Precondition: receiver isOK = false

Returns the error message held by the receiver. Raises
FSInterpreterResultIllegalCallException if the precondition is not met (i.e. if the receiver does
not represent an error).

PROGRAMMER API: FSINTERPRETERRESULT 136

errorRange

-(NSRange)errorRange

Precondition: receiver isOK = false

Returns the range of characters of the error represented by the receiver. Raises
FSInterpreterResultIllegalCallException if the precondition is not met (i.e. if the receiver does
not represent an error).

inspectBlocksInCallStack

-(void)inspectBlocksInCallStack

Precondition: receiver isOK = false

Shows the user the blocks in the error call stack. This is useful when an error occurs during an
interactive session.

isExecutionError

- (BOOL)isExecutionError

Returns YES if the receiver represents an F-Script execution error, otherwise returns NO.

isOK

- (BOOL) isOK

Returns YES if the receiver represents an F-Script execution without error, otherwise returns
NO.

isSyntaxError

-(BOOL) isSyntaxError

Returns YES if the receiver represents an F-Script syntax error, otherwise returns NO.

result

-(id) result

Precondition: receiver isOK

Returns the object which has been returned by the F-Script execution. Raises
FSInterpreterResultIllegalCallException if the precondition is not met (i.e. if the receiver
represents an error).

PROGRAMMER API: FSINTERPRETERVIEW 137

56 FSInterpreterView

Inherits From: NSView

Conforms To: NSCoding

NSObject (NSObject)

Declared In: FScript/FSInterpreterView.h

Class Description

This View subclass is a command line interface to an F-Script interpreter. The interpreter is
bundled into the FSInterpreterView.

Method Types

Getting the interpreter object -interpreter

Putting a Command -putCommand:

Notifying the user -notifyUser:

Managing fonts -fontSize
 -setFontSize:

Instance Methods

fontSize

-(CGFloat) fontSize

Returns the size of the font used by the receiver.

interpreter

-(FSInterpreter *) interpreter

Returns the interpreter object used by the receiver.

notifyUser:

- (void) notifyUser:(NSString *)message

Shows message to the user.

PROGRAMMER API: FSINTERPRETERVIEW 138

putCommand:

- (void) putCommand:(NSString *)command

Puts the command command in the receiver as if it were a user-entered command.

You can use carriage return characters (i.e., a characters specified using the \r escape
sequence in C or F-Script string literals) to emulate a user pressing the Return key (i.e., asking
for the execution of the command).

setFontSize:

-(void) setFontSize:(CGFloat)theSize

Sets the size of the font used by the receiver to theSize.

PROGRAMMER API: F-SCRIPT FUNCTIONS 139

57 F-Script Functions

This section gives detailed descriptions of the C functions provided by the F-Script framework.

FSArgumentError()

SUMMARY Generates an F-Script execution error indicating an invalid argument

SYNOPSIS

 #import <FScript/FScriptFunctions.h>

 void FSArgumentError(id argument, NSInteger index, NSString *expectedClass,

NSString *methodName)

DESCRIPTION

This method is used when an argument passed to a user method is not of the expected class.
This method generates an F-Script execution error (including an error message), by calling
FSExecError().
The argument object is the invalid argument.
The index is the position of the argument in the argument list of the called method (first
argument is in position 1).
The expectedClass string is the name of the expected class.
The methodName string is the name of the method called with the invalid argument.

FSExecError()

SUMMARY Generates an F-Script execution error

SYNOPSIS

 #import <FScript/FScriptFunctions.h>

 void FSExecError(NSString *errorStr)

DESCRIPTION

This method raise an exception signaling an F-Script execution error. errorStr, which should
be an error message, is used as the exception "reason". The name of the exception is
"FSExecutionErrorException".

FSVerifClassArgs()

SUMMARY Verifies the classes of the arguments given to a user method.

SYNOPSIS

 #import <FScript/FScriptFunctions.h>

 void FSVerifClassArgs (NSString *methodName, NSInteger nbArgs,…)

PROGRAMMER API: F-SCRIPT FUNCTIONS 140

DESCRIPTION

Use this method to test the classes of the arguments passed to a method you implement. For
example, if you implement a method with two arguments, a NSNumber (or nil) and a NSString,
you may call FSVerifClassArgs() at the beginning of your method body:

-myMethod:(NSNumber *)arg1 :(NSString *)arg2
{

 FSVerifClassArgs(@"myMethod",2,arg1,[NSNumber class],(NSInteger)1,arg2,[NSString

class], (NSInteger)0);

 /* functional code of myMethod here */
}

For each argument of your method, you must give a group of three arguments to
FSVerifClassArgs :

- the argument of your method
- the expected class of the argument
- the integer 1 if the argument can be nil, otherwise the integer 0 (do not forget to cast them
as (NSInteger) (see the example)).

FSVerifClassArgs generates an F-Script execution error (by calling FSExecError()) if an
argument is not valid.

FSVerifClassArgsNoNil()

SUMMARY Verifies the classes of the arguments given to a user method.

SYNOPSIS

 #import <FScript/FScriptFunctions.h>

 void FSVerifClassArgsNoNil (NSString *methodName, NSInteger nbArgs,…)

DESCRIPTION

The same as FSVerifClassArgs except that the arguments you test cannot be nil.

Example:

-myMethod:(NSNumber *)arg1 :(NSString *)arg2
{

 FSVerifClassArgsNoNil(@"myMethod",2,arg1,[NSNumber class],arg2,[NSString class]);

 /* functional code of myMethod here */
}

