OOPAL: Integrating Array Programming in Object-Oriented
Programming

Philippe Mougin
pmougin@acm.org

ABSTRACT

Array programming shines in its ability to express computations at
a high-level of abstraction, allowing one to manipulate and query
whole sets of data at once. This paper presents the OOPAL model
that enhances object-oriented programming with array program-
ming features. The goal of OOPAL is to determine a minimum set
of modifications that must be made to the traditional object model
in order to take advantage of the possibilities of array programming.
It is based on a minimal extension of method invocation and the
definition of a kernel of methods implementing fundamental array
programming operations. The OOPAL model presents a general-
ization of traditional message passing in the sense that a message
can be send to an entire set of objects. The model is validated in
F-SCRIPT, a new scripting language.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifications—Object-

oriented languages, APL; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms

Language, Design, Performance

Keywords

F-Script, Messaging Pattern, Array Programming, Smalltalk, High-
Order Messages, High-Level Language

1. THE PROBLEM

While object-oriented programming offers high-level tools for
data modeling (abstract data type, polymorphism, inheritance), the
same is not true for data manipulation. The basic operation pro-
vided for object manipulation is message sending, a fundamen-
tal operation as it supports polymorphism and encapsulation, but

which remains a very fine-grained low-level operation. Indeed object-

oriented programming does not offer a high-level model for manip-
ulating whole sets of data (i.e., collections of objects). In high-level

© ACM, 2003. This is a minor revision of the work pub-
lished in Proceedings of the 18th ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and applications,
http://doi.acm.org/10.1145/949305.949312.

Stéphane Ducasse
Software Composition Group
University Of Bern
Bern, Switzerland

ducasse@iam.unibe.ch

programming models like array programming or relational algebra,
complex expressions manipulating entire sets of data are easy to
design and are expressed in an extremely compact manner, without
requiring the explicit use of loops, tests, or navigation instructions
in a data graph. The same expressions would require several tens or
hundreds of lines of code in conventional object-oriented program-
ming languages.

Our aim is to provide a new approach which offers higher-level
capacities for data manipulation within the scope of object-oriented
programming. For this purpose, we enrich object-oriented pro-
gramming with concepts taken from array programming in a model
called OOPAL (which stands for Object-Oriented Programming
and Array programming Language integration). This paper presents
OOPAL and its implementation in F-SCRIPT, an object-oriented
scripting language using a Smalltalk syntax. This article makes the
following contributions: it identifies design principles for success-
ful integration between OOP and array programming, defines the
OOPAL model that enables this integration, and shows how it is
validated through implementation of F-SCRIPT.

We start by an overview of array programming (Section 2). An
example in traditional object-oriented language is compared with
its equivalent in F-SCRIPT (Section 3). An analysis of the re-
quirements for obtaining a successful integration is then presented
in terms of design principles (Section 4). Based on these princi-
ples, OOPAL is described as three components: messaging pat-
terns (Section 5), mapping between basic array programming and
OOP concepts (Section 6), and array programming operations (Sec-
tion 7).

2. ARRAY PROGRAMMING OVERVIEW

Array programming is the result of a mathematical notation in-
vented by Kenneth Iverson in the 1950s. The PAT system (Person-
alized Array Translator) was the first computing environment to
implement the Iverson notation, followed by APL, which was de-
veloped by IBM in the 1960s and earned Iverson the Turing Award
[28, 6]. Herb Hellerman, the creator of PAT, explains the choice of
an array language in [23]:

Major advances in programming language are desir-
able to best provide a personalized service for creative
man-machine interaction. A most promising direction
for improvement is to better respond to the fact that
most problems presented for computer solution deal
with arrays of operands rather than isolated operands.
Although modern languages include the ability to ac-
cess array elements by indexing, the Iverson language
recognizes, in its basic structure, the ability to specify
entire arrays as operands. This not only reduces the

number of program characters which must be speci-
fied to perform most program functions, it also reduces
the amount of loop control and other explicit program
logic required of the user. The language includes se-
lection operations, generation of test and argument ar-
rays, and other macro-operations in a simple consistent
manner.

Array programming is used in numerous fields and in particular
in science and finance. Some of its concepts are found in some
widely used software such as MatLab, Mathematica and IDL[42].
APL continues to be developed and has inspired numerous other
languages such as ZPL [13], Nial [39, 34], Fortran 90 and HPF
[53], K [47],] [48, 26, 27] and PDL [20].

2.1 Principles

Array programming has two key characteristics:
e Operations can be directly applied to entire arrays of values.

e A set of special functions and operators provides powerful
means of data manipulation and allows complex data manip-
ulation processes to be expressed concisely.

The fundamental principle behind array programming is that opera-
tions are directly applied to entire arrays of values, without the need
for explicit loops. For example, if X and Y are two arrays of num-
bers, X+Y returns a new array which contains the sum, element-
wise, of X and Y as shown by Figure 2. It is also possible to com-
bine scalars and arrays in the same expression. For example, X*2
returns an array which contains the result of multiplying each ele-
ment in X by two. In an array programming language such as For-
tran 90, the expression Z = W+X*SIN(Y) is legal, not only when
W, X, Y, and Z are scalars, but also when they are arrays.

2.2 Array Programming Building Blocks

More precisely, array programming is built around scalars, multi-
dimensional arrays, functions, and operators.

Scalars. Conventional array programming languages are oriented
towards numeric computing. They offer a certain number of basic
data types, including numbers and characters, and sometimes offer
complex numbers, dates, and Booleans.

Multi-Dimensional Arrays. Traditionally, array programming sup-
ports multi-dimensional arrays and lets one specify the dimension
onto which operations are carried out. For instance, in APL, one
can index the operation symbol with a number specifying the di-
mension using [and]. Thus, in the expression X/[Z]Y, the array Y
is compressed along its Zth dimension using the Boolean array X.

Functions and Operators. Furthermore, array programming fea-
tures a set of powerful functions and operators which enable data
manipulation to be expressed in a concise manner. As pointed out
by the ACM SIGAPL, "The APL primitives express broad ideas
of data manipulation. These rich and powerful primitives can be
strung together to perform in one line what would require pages
in other programming languages”. For instance, these primitives
allow one to: select some elements in an array, cumulatively ap-
ply a function to the elements of an array, transpose the elements
of an array, slice an array, reshape an array, or combine array ele-
ments with generalized outer and inner product operations. These
array programming operations are in synergy with the automatic
processing of arrays and offer great power for data manipulation.

Airplane Pilot

+capacity():Number +name():String
+location():String +age():Number
+model():String +address():String
1 +salary():Number
+sendMail(String):void
1

*| *
Flight

+arrivalLocation():String
+departureLocation():String
+arrivalDate():Date
+departureDate():Date
+airplane():Airplane
+pilot():Pilot

Figure 1: A simple domain: airplanes, flights and pilots.

For example, compression may be used to select elements in an ar-
ray which meet a particular criterion. Thus, in APL the expression
(X < 60) / X selects elements from X which are less than 60.

3. AN EXAMPLE

To illustrate our point we use the object model presented in Fig-
ure 1 in several examples throughout the paper. It presents the mini-
mal model of an airplane company and represents flights, airplanes,
pilots, and their relationships (an airplane and a pilot are associated
with each flight). We are only interested in manipulating objects via
their behavioral interface. Thus, our UML schema does not spec-
ify the instance variables but only the methods. We define three
collections of objects named A, F, and P which group together the
references to all instances of airplanes (A), flights (F), and pilots
(P) in our airplane company’s fleet.

Suppose that we want to print the names of all the pilots, ranked
by salary in increasing order, in charge of a flight to Paris on a B747
airplane. Using Java or other mainstream object-oriented languages
we would have to write this kind of code'.

Java.
TreeSet pilots = new TreeSet(new Comparator()

public int compare(Object o1, Object 02)
{
int salary1 = ((Pilot)o1).salary();
int salary2 = ((Pilot)o2).salary();
if (salary1 < salary2)
return -1;
else if (salary1 == salary2)
return O;
else
return 1;
}

Iterator flightlterator = F.iterator();
while (flightlterator.hasNext())

Flight currentFlight = (Flight)flightlterator.next();
if (currentFlight.arrivalLocation().equals(’"PARIS”)
&& currentFlight.airplane().model().equals(’"B747”))

By using a TreeSet we can both sort the selected pilots by salary
in increasing order and avoid duplicates.

pilots.add(currentFlight.pilot());
}

Iterator pilotlterator = pilots.iterator();
while (pilotlterator.hasNext())

System.out.printin(((Pilot)pilotlterator.next()).name());

}

Our solution, OOPAL, is based on the unification of array pro-
gramming and OOP. The main idea is that this unification lets one
develop code using the object interfaces and still use the power of
array programming. The unification is realized by the introduction
of messaging patterns and array programming operations (See Sec-
tion 5). As the OOPAL model is supported by F-SCRIPT, a new
Smalltalk dialect, we use it as a notation to express the examples.

With F-SCRIPT, the same operation on the same object model is
expressed as follows:

F-ScRIPT.
pilots := (F where:F arrivalLocation = 'PARIS’

& (F airplane model = 'B747’)) pilot distinct.
sys log:(pilots name at:pilots salary sort)

The expression F arrivalLocation = 'PARIS’ returns an array
of Booleans that indicates, for each flight, whether or not the ar-
rival location is "PARIS’. Such an array combined with the other
expression F airplane model = 'B747’ is then used by the where:
method to select the corresponding flights.

4. CHALLENGES OF SUCCESSFUL INTE-
GRATION

Based on the analysis of existing object-oriented languages and
array languages, this section presents the challenges that need to be
resolved to integrate array programming in OOP and defines a list
of design principles that such an integration should satisfy.

4.1 Design Principles

The OOPAL model is the result of a simple analysis: since mes-
sage passing is the fundamental operation in object-oriented pro-
gramming, an array programming operation such as the addition
of two numerical arrays must be conveyed as the generation of a
certain number of messages over the array elements. For example,
suppose X and Y are two arrays of the same size whose elements
are instances of the Number class, with X = {1, 2, 3, 4} and Y =
{10, 20, 30, 40}. Then X+Y must result in the generation of four
messages: 1+10, 2+20, 3+30, 4+40 (Figure 2).

X Y

1 | «—t—110 11

2 | «—*+— |20 :; 22

3 | «—+— |30 33

4 | «—F— 40 44
X+Y

Figure 2: X+Y results in the array {11, 22, 33, 44}.

Supporting All Types of Data. Traditionally, array programming
supports the manipulation of numbers and characters. For inte-
gration with object-oriented programming, we want to be able to

manipulate any object with the same ease.

Therefore, the solution should use objects as atomic data elements,
and should not be limited to numbers and characters alone.

Minimal Extension to OOP. The integration of array program-
ming techniques with object technology can only be broadly ac-
cepted if array programming is a new conceptual tool that OOP
developers can use when appropriate. The foundation of object-
oriented programming should therefore not be altered. Ideally, it
would require no change or extension of existing languages.

The solution must minimize the extensions required to conventional
OOP, while featuring the main advantages of array programming.

Extensibility. A common approach for supporting array program-
ming features is to implement operations in a way that makes them
able to automatically process arrays element-by-element. This has
been adapted to some object-oriented languages. In Squeak [25],
for instance, some arithmetic methods are implemented in that way,
making it possible to write X+Y to add whole arrays. However, in
an object-oriented context, it is hard to generalize this solution. In-
deed, generalizing this approach to an existing object-oriented sys-
tem would require reformulating and re-implementing each exist-
ing method to make it able to function in array mode. Furthermore,
it would require programming each new method in that way. We
want the OOPAL array programming model to be universally ap-
plicable (i.e., not restricted to a set of predefined methods) and we
don’t want it to put any burden on class developers.

The proposed solution should be generic and not based on a prede-
fined identification of the methods. It should work for all methods,
without requiring any special support from the methods themselves.

Supporting Encapsulation. Encapsulation - manipulating objects
using their methods - is consubstantial with the notion of objects
and supports desirable characteristics such as polymorphism, im-
plementation hiding, extensibility, integrity enforcement [45]. The
failure to support encapsulation leads to a number of well-known
problems [32].

The solution must therefore support encapsulation and consider
that interaction with objects is carried out by sending messages.

No Additional Constraints on Objects. Sometimes, solutions for
integrating object technology with other paradigms or the use of
object-oriented frameworks place restrictions on the object-oriented
programming model. Such practices lead to upfront design deci-
sions that force developers to consider how the objects they are
designing will be manipulated. Within the scope of the OOPAL
model, we believe that such constraints are undesirable.

Therefore, the solution should not place any constraint on objects.
Developer should not need to know in advance whether their ob-
Jjects will be manipulated using the OOPAL model.

Handling Array Specific Messages. Since arrays are also objects,
it should be possible to send messages to the arrays themselves and
not their elements. As shown by Figure 3, we may want to access
the elements of an array or invoke methods of the array itself.

The solution must provide a means of differentiating the operations
on arrays from operations on the contents of arrays.

1 Smallinteger
false w |::> False
'aString' String

1

class
false | «—— Array
'aString'

Figure 3: The need to differentiate messages sent to an array
or to its elements.

Nested Arrays. An operation can apply to different nested levels
as shown by Figure 4. You may wish to go to the maximum nesting
level, stop at the first level, or go down to an arbitrary intermediate
nested level.

message
|:| message message

message message
C [|qmessase o8
]] e

Figure 4: The need to specify the level to which the message
applies.

The solution must support the specification of the nested level to be
reached (this is true for the receiver as well as for arguments).

Various Combinations. Until now we have imagined the imple-
mentation of operations that associate array elements one by one.
However, some other useful combinations are possible. For ex-
ample, we may want to execute an outer product as in APL, i.e.,
combine an array element with each element of another array as
shown by Figure 6. The number of possible combinations becomes
even larger if we consider messages with any given number of ar-
guments. Indeed, these messages can bring any number of arrays
and scalars into play as shown in Figure 5.

Therefore the solution must cover a large number of useful combi-
nations.

4.2 The OOPAL Model in a Nutshell

As we will present in Section 5, the OOPAL model is based on
messaging patterns that support the manipulation of object collec-
tions in an array programming-like fashion. Messaging patterns
support encapsulation, extensibility, a minimal extension of the ob-
ject model, and the handling of array specific messages and nested
arrays. They also avoid the addition of constraints on object inter-
faces. Therefore any kind of object and any kind of method can be
manipulated in an array programming-like fashion. The model is
completed with a set of specific array programming operations that
have been adapted to object-oriented programming.

5. MESSAGING PATTERNS

Now, we shall present the core aspect of OOPAL, messaging
patterns. As we have mentioned, messaging patterns are at the

X1 y1 z1
X2 y2 z2
X3 y3 z3
y4 z4
x1 y1 z1
X2 y2 z2
X3 y3 z3
y4 z4
x1 y1
2 ”
Y
x3 va (z is a scalar)

Figure 5: Array elements and scalars may be combined in com-
plex ways.

heart of the minimal extension of the traditional object model, which
supports the design principles identified in Section 4.

5.1 Extended Message Passing

As explained, array programming enables operations to be ap-
plied to entire arrays without requiring the explicit use of a tradi-
tional loop control structure. OOPAL messaging patterns extend
the traditional message passing operation in a backward compati-
ble manner to support messages to be sent to collection of objects.
Messaging patterns allow for the sending not only of a simple mes-
sage, but of a complex group of messages. Traditional message
passing then conceptually becomes a specific case of messaging
pattern. Note that as regards speed of execution, normal method
invocation is not affected by messaging patterns.

In this paper we present the principal elements of messaging pat-
terns. A complete description can be found in the F-SCRIPT User’s
Manual [36].

Messaging pattern notation makes it possible to:

e Specify for each array involved in a messaging pattern (i.e.,
receiver and arguments) whether a loop should iterate over
the elements of this array. Moreover, the nesting level of this
loop in relation to other loops in the messaging pattern can
be specified.

e Specify a different messaging pattern for each level of array
nesting, should nested arrays be used.

e Use implicit messaging pattern which makes notation easier.

We also propose an abstract notation that makes it possible to ex-
press the structural properties of messaging patterns, regardless of
their actual message selectors (i.e., method names) and arguments.
These structural properties are called patterns. For example, the
notion of an outer product corresponds to a particular pattern.

5.2 Simple Messaging Patterns

The messaging pattern notation involves indicating iterations in
the message expression itself. When the @ symbol is placed after
the receiver and/or just before an argument, it means that a loop
iterating over the elements of such designated array(s) is executed
to generate message sends.

The two following rules using a Smalltalk syntax’ express it
(these rules can be combined, as we show later):

e rec @max:arg means that all the elements of rec receive the
message max: with the argument arg. {1, 2, 3} @max:2
generates three message sends (i.e., 1 max:2, 2 max:2, 3
max:2) and returns {2, 2, 3}.

e rec max:@ arg means that rec receives the message max:
for each elements of arg. 2 max:@ {1, 2, 3} generates
three message sends (i.e., 2 max:1, 2 max:2, 2 max:3) and
returns {2, 2, 3}.

For example, the expression F @airplane sends the message air-
plane to all the elements of F and returns the resulting array (i.e.,
an array of airplane objects, having the same size as F, where the
airplane at index i in this array is the airplane associated with the
flight at index i in F). One can note that the @ form is very similar
to the EACH operator in APL.

Both receiver and arguments can be iterated upon as shown by
the following example: {1, 2, 3} @+@ {10, 20, 30} returns the
array {11, 22, 33}

As shown by the second rule, a messaging pattern expression
does not require the receiver to be an array. In this case, the mes-
saging pattern will only lift over the arguments designated by an
@ sign. For instance, suppose that D is a dictionary providing
lookup with the method objectForKey:. D contains associations
between country names and capital city names. To get the capi-
tal city of France, we write D objectForKey:’France’, which re-
turns 'Paris’. Thanks to messaging patterns, we can also provide
a whole set of keys without requiring any special support from the
objectForKey: method: D objectForKey:@{ France’, 'Norway’,
‘Canada’, 'Japan’ } returns {'Paris’, 'Oslo’, ‘'Ottawa’, "Tokyo'}.

The messages resulting from the execution of a messaging pat-
tern are sent sequentially. There are no parallel or asynchronous
semantics attached to OOPAL messaging patterns®. Arrays are it-
erated from the start of the array towards the end. The method
invocation semantic is not altered by OOPAL and is defined by the
object-oriented language at use.

Composition. A messaging pattern has the same precedence level
as conventional message sends and can be composed in a similar
manner. For example, the expression F @airplane @model gen-
erates the airplane array described in a previous example, and then
sends the model message to each element in this array, which re-
turns a new array giving the airplane model corresponding to each
flight. The expression F @departureDate @> NSDate date re-
turns a Boolean array which indicates, for each flight, whether it

2In Smalltalk, we invoke the method max: with parameter b on
object a with the expression a max:b — this is the Smalltalk equiv-
alent of writing a.max(b) in Java. The method’s name is “max:”
and is called the selector. Unary selectors (i.e., selectors with no
argument) have a higher precedence than binary selectors (i.e., se-
lectors using symbols like +, -, < etc.), which have themselves
a higher precedence than keyword selectors (i.e., selectors that in-
cludes one or more colons, such as max: or at:put:). Thus the
expression @ max:b + ¢ abs will be evaluated in the same way as
a max:(b + (c abs)).

3This is to cope with the Minimal Extension to OOP requirement
expressed in section 4.1, as introducing parallel execution seman-
tics would clearly not contribute to a minimal extension. That said,
the messaging pattern idea and notation certainly has good poten-
tial to be associated with parallel programming semantics. This
subject is, however, outside the scope of this article.

will take place after the current date *.

x1 y1 x1*y1,x1 *y2,x1*y3, x1 *y4

x2 y2 0 > * >
3 v3 |:> x2*y1, x2*y2, x2*y3, x2 * y4
v4 x3 *y1,x3 *y2, x3 *y3, x3 *y4

Figure 6: Outer product.

Advanced Combinations. Thus far, we have seen that by using
patterns on some arrays we generate messages that use the first el-
ement of each array, then the second, and so on. But we can also
combine array elements in other ways. For example, suppose we
want to get the outer product of X and Y, using the * method (Fig-
ure 6). To do this, we have to specify that we want a loop on X and
an inner loop on Y. We therefore use a number after the @ symbol
to state the inner level of each loop. The outer product as shown in
Figure 6 is then expressed as X @1"@2 Y.

For instance, if X is {1, 2, 3} and Y is {10, 20, 30}, then X
@1*@2 Y returns {{10, 20, 30},{20, 40, 60}, {30, 60, 90}}.

If Zis {2, 0, 4} then X @1 between:@2 Y and:@3 Z re-
turns {{{false, true, false}, {false, true, false}, {false, true,
false}}, {{true, true, false}, {true, true, false}, {true, true,
false}}, {{true, true, false}, {true, true, false}, {true, true,

false}}}.

X @1 between:@2 Y and:@1 Z returns {{false, false, false},
{true, true, true}, {false, false, false}}

5.3 Recursive Messaging Patterns

Simple messaging patterns are the most commonly used. How-
ever they are not sufficient when dealing with nested arrays. For
example, let X be the array {{1, ’string’, {3}}, {5}}. X has two el-
ements. The first element is an array containing a number, a string,
and another array, and the second element is an array containing a
number. The expression X class returns the class Array. The ex-
pression X @class returns {Array, Array} as the message class is
sent to the array elements. To get the class of the elements of each
element we use a recursive messaging pattern as follows: X @@
class which returns { {Number, String, Array},{Number}}. Ina
recursive messaging pattern, a pattern is applied to another pattern
instead of just to a message. Recursive messaging patterns have
multiple levels. At each level is a pattern that applies to the pattern
found at the next level. The pattern at the last level applies to a
simple message. In the X @@class example, the first level of the
messaging pattern is the leftmost @. It indicates that the rest of the
messaging pattern, here @ class, must be applied to each element
in array X. Each level in a recursive messaging pattern corresponds
to a nesting level in the arrays being manipulated.

Recursive messaging patterns can easily become very complex,
but such complex messaging patterns are rarely used.

5.4 Implicit Messaging Pattern Notation

The notation introduced previously supports the definition of mes-
saging patterns and is fully executable in F-SCRIPT. However, this

“NSDate is the class representing the dates in F-SCRIPT and date
is a class method returning the current date.The NSDate class im-
plements conventional comparison methods.

explicit notation is still too complex compared with conventional
array languages. In APL we write X+Y to add the arrays X and Y,
with the notation presented above we must write X @+@ Y.

To solve this problem, we introduce an implicit notation for mes-
saging patterns, which in most cases eliminates the explicit use of
@. Going back to our example, we can now write X + Y like in
APL.

This approach requires the language in which it is used to be
able to recognize the specification of a messaging pattern even if
the messaging pattern is not denoted by any particular signs. In
F-SCRIPT, we use the following rule to support implicit messaging
patterns: when a message is sent to an array, if the method invoked
is not implemented by the array, the message is sent to the array
elements. Moreover, if certain arguments of this message are also
arrays F-SCRIPT takes the elements in these arrays one at a time.

When X, Y, and Z are arrays of numbers, this rule makes it possi-
ble to write expressions such as: X+Y, X*2, X cos, X between:Y
and:Z, and X between:10 and:Z. These expressions follow the
array semantics i.e., they operate on the array elements. The rule
also makes it possible to use the implicit notation for recursive mes-
saging patterns. For instance {{1, 2, 3}, {10, 3.14}} * 2 is equiv-
alent to {{1, 2, 3}, {10, 3.14}} @@ 2 and evaluates to {{2, 4,
6},{20, 6.28}}.

Thanks to implicit notation we can simplify the examples given
in the previous sections. Thus, we can write F airplane instead
of F @airplane and F airplane model instead of F @airplane
@model. However, implicit notation cannot always be used, es-
pecially when the receiver is not an array but arguments should be
iterated upon. For instance, the expression 2 * X where X is an
array of numbers will not work. In this case, an explicit messaging
pattern is required: 2 *@ X.

Note that the proposed rule can be implemented in the message-
sending routine with nearly no performance loss.

5.5 Abstract Notation

When reasoning about messaging patterns, we may not be in-
terested by the actual message selector and the actual arguments
used in the expression. We often want to think about the structural
part of a messaging pattern expression. We extract this structural
information, which we call a pattern, and represent it as follow:

e The pattern of the messaging pattern expression F @arrival-
Date is @.

e The pattern of the messaging pattern expression {1, 2, 3}

@+@ {10, 20, 30} is @:@.

e The pattern of the messaging pattern expression 2 max:@1{0,

4,8} is :@.

Given an explicit messaging pattern expression in F-SCRIPT, one
can produce the associated abstract notation by applying the fol-
lowing transformations:

e Remove the sub-expressions representing the receiver and
the arguments.

e Replace binary selectors (e.g., +, -, etc.) by a colon.

e Remove all the characters from the selector except the colon
characters.

Some patterns are frequently used and can be given standard, well-
known names. For example, @1:@2 is called outer product.

6. BUILDING BLOCKS

The OOPAL model would not be complete without implement-
ing the basic elements of array programming. Now we present how
we map them into an object-oriented programming model.

6.1 Scalars

The scalar data types (e.g., Booleans, numbers) manipulated by
conventional array programming languages corresponds in our model
to classes. Data is no longer limited to certain types but may be of
any class. This is possible because, in OOPAL, array programming
facilities are universal and not linked to any particular class.

6.2 Multi-dimensional Arrays

Array programming allows data to be grouped together in multi-
dimensional arrays which vary in size, are heterogeneous, and may
themselves contain arrays.

In object-oriented languages the closest data-type is ordered col-
lection (e.g., List in Java, OrderedCollection in Smalltalk). OOPAL
uses the extensibility of OOP to define the main array-programming
operations as dedicated methods on collection classes. In this arti-
cle, we refer to these enriched collections as “arrays”.

Conventional object collections are one-dimensional and do not
offer direct support for the multi-dimensional manipulations which
are so dear to array programming. Nonetheless, we believe that it is
preferable in our context to avoid introducing the notion of multi-
dimensional object collections for three reasons.

e First, it would involve a substantial addition leading to nu-
merous complexities and this would contradict the minimal
extension principle.

e Second, while multi-dimensional matrix manipulation may
be a common occurrence in mathematical processes it is less
useful in our context which looks at the manipulation of any
type of objects.

e Third, we are not abandoning advanced support for opera-
tions requiring multi-level object nesting. Collection nesting
is still possible, as nothing prevents a collection from con-
taining collections. In OOPAL, multi-dimensional arrays
are simulated using nested arrays. The notion of recursive
messaging patterns allows array programming techniques to
be used on nested arrays regardless of the depth of nesting,
and the transposition operation (see section 7) caters for ex-
plicit permutation of dimensions.

6.3 Functions and Operators

Array programming languages offer a certain number of opera-
tions, called functions, which may be applied to scalar data and/or
to arrays. Functions may be provided by the language such as basic
mathematical operations or array-specific functions like compres-
sion. They may also be provided by the developer or via external
libraries. In OOP, functions map naturally to methods.

Array programming also uses the notion of operators (see [29]).
An operator can be described as a function which applies to other
functions to produce a function. Array programming is widely
based on operators for data manipulation. For example, the reduc-
tion operator enables any function with two arguments to be cumu-
latively applied to all the elements in an array. As with functions,
primitive operators exist and it is possible to define new operators.

Object-oriented programming does not have any direct equiva-
lent to the operator concept but the main advantages of operators
can be obtained by implementing methods which use operations as
arguments. Depending on the language, one can use constructions

such as blocks (lambda functions) or selectors in Smalltalk, anony-
mous methods in C#, selectors in Objective-C, or lambda functions
in Python, CLOS. For example, an equivalent to a reduction oper-
ator (in a slightly modified form) already exists in Smalltalk with
the inject:into: method, which takes a block as an argument.

7. ARRAY PROGRAMMING OPERATIONS
BY EXAMPLE

The notion of messaging pattern alone is not sufficient to fully in-
tegrate array programming in object-oriented programming. Mes-
saging patterns become powerful when they are associated with
specific array programming operations. Note that these operations
are implemented as simple methods. No new syntactic notation is
necessary. These operations are generic and are meant to be pro-
vided by languages supporting the OOPAL model. They do not
require support from the developer. In particular, these operations
enable:

e Easy navigation in the object graph,

e Concise and readable expression of the selection of objects
according to arbitrarily complex criteria,

e Sophisticated data analysis, and

e Concise and readable expression of complex object manipu-
lations.

As we illustrate now, using messaging patterns and these operations
makes it possible to capitalize on the power of array programming
principles in an object-oriented context.

7.1 Six Selected Operations

Here, we present six examples of array specific operations, as
implemented in F-SCRIPT, but there are many others (see [36, 37]).

Compression. Compression selects certain elements of an array.
The result of compression is a new array which contains the se-
lected elements. Compression is an operation which requires two
operands: the array from which we want to make a selection and a
Boolean array of the same size. An element is selected if the corre-
sponding Boolean (i.e., at the same index) holds true. For example,
suppose that our array P contains six Pilot objects. If we want to
select elements at index 0, 1, and 5, we can apply compression as
follows: P where:{true, true, false, false, false, true}.

Compression requires a Boolean array which specifies the selec-
tion that has to be made. Thanks to messaging patterns, such arrays
are very easy to generate. For example, P salary > 3000, gener-
ates a Boolean array which indicates, for each pilot, whether his/her
salary is greater than 3000. The expression is evaluated as follows:
the salary message is sent to each element in P (this messaging
pattern is denoted implicitly), which produces an array of numbers.
The message > 3000 is then sent to each element in the array of
numbers (here again, in accordance with the implicit notation of
messaging patterns) which produces the desired Boolean array. We
can then use this Boolean array to compress the P array and thus
select only pilots whose salary is greater than 3000: P where: P
salary > 3000.

Messaging patterns enable complex Boolean conditions to be ex-
pressed naturally. For example, (P where:(P salary > 3000) &
(P address = 'PARIS’)) sendMail:'Dear Pilot, etc. etc. etc.
selects the pilots whose salary is greater than 3000 and who live in
Paris, and sends them an e-mail.

Reduction. Reducing an array consists in cumulatively evaluating
a custom operation on the elements of an array. In F-SCRIPT, re-
duction is implemented as the method \ of the class for arrays (i.e.,
the NSArray class). For example, you add up the elements of an
array with the expression: {1, 2, 3, 4} \ #+ which returns 10. The
result is computed as if you had entered: 1 + 2 + 3 + 4. Reduction
may be used with any operation (method or block) which takes two
operands and returns an object. Some types of reduction are used
very often. For example:

e Reduction of an array of numbers using the min: method
returns the smallest element in the array (alternatively, max:
reduction returns the greatest element).

e Reduction of a Boolean array using the | method (i.e., the
logical OR) enabling existential quantification. For example,
P salary > 3000 \ #| returns true if a pilot has a salary
greater than 3000.

e Reduction of a Boolean array using the & method (i.e., log-
ical AND) enabling universal quantification. For example,
P salary > 3000 \ #& returns true if all the pilots have a
salary greater than 3000, otherwise false.

e Reduction of a Boolean array using the + method which pro-
vides the number of objects which check a certain predicate.
For example, P salary > 3000 \ #+ returns the number of
pilots whose salary is greater than 3000.

Reduction already exists in other object-oriented languages (e.g.,
inject:into: method in smalltalk, reduce function in Python). How-
ever reduction is less used in these languages because of the ver-
bose definition it requires and because object collections in these
languages are less frequently present than in OOPAL. In OOPAL
the reduction method works in synergy with the other specific high-
order methods and idioms promoted by array programming.

Extended Indexing. In array programming, an array can be in-
dexed by a whole array of indices. The translation of this capacity
in our OOPAL model involves the array class providing indexing
methods able to deal with an array of indices. For instance, if X
is {1, 2, foo’, ’bar’, nil, 99, 100}, then X at:{0, 2, 3} returns
{1, foo’, 'bar’}, and X at:{0, 2, 3} put:{-1, -1, -77} modifies X
which becomes {-1, 2, -1, -77, nil, 99, 100}. This provides a very
general way to designate elements of an array. Severals methods
let one conveniently generates arrays of indices for various usages,
like selecting a particular region, sorting (see below), shuffling etc.

Sorting. The result of the sort message sent to an array is an array
of integers containing the indices that will arrange the receiver of
sort in ascending order. For example, if X is {5, 2, 1, 3, 6, 4}
then X sort returns {2, 1, 3, 5, 0, 4}. We can then get X in as-
cending order by indexing it with the result of the execution of the
sort method: X at:X sort returns {1, 2, 3, 4, 5, 6}. The advantage
of this method is that once we have the ordered index numbers, we
can then apply them not only to the original scrambled array, but to
any other array of the same size. For example, suppose we want to
get an array of pilots sorted by ascending salary. We just have to
evaluate the expression P at:P salary sort.

Joins. The OOPAL join operation, loosely named after the join
operation in relational algebra, is implemented by the >< method
of the of the class for arrays (i.e., the NSArray class). For each
element, say e, of the receiver, this method computes an array con-
taining the positions of € in the argument. It returns all the arrays

packed into an array of arrays. For instance, {1, 2, foo’} >< {4,
foo’, 1, foo’, 'foo’} returns {{2}, {}, {1, 3, 4}}. This result
means that the first element of the receiver is found at index 2 in
the argument, the second element of the receiver is not present at
all in the argument and the third element of the receiver is found at
indices 1, 3, and 4 in the argument.

Suppose we want to obtain, for each pilot in P, the list of all
the flights that the pilot is responsible for. That is, we want to
construct an array of the same size as P, where each element is an
array containing the flights associated with the corresponding pilot
in P. The list of flights at index i in the resulting array contains the
flights for which the pilot at index i in P is responsible. As shown in
Figure 1, the Pilot class does not provide a method (say, “flights”)
returning the list of flights associated with a pilot. Thus we cannot
just write something like P flights. So, how can we navigate from
the pilots to the associated flights? It is in this kind of situation that
the join method is useful. This method can be used here because the
Flight class provides a method (named pilot) that makes it possible
to navigate from a flight to its associated pilot. The result can be
obtained by combining the join method, an extended indexing, and
two messaging patterns: F at:@ P >< F pilot.

As shown here, the join method makes it possible to easily navi-
gate an object graph without requiring the object model to maintain
and provide inverse relationship (i.e., back-links) navigation capac-
ities. Used wisely, this characteristic can simplify the implementa-
tion of an object model and allow one to express ad hoc queries.

Transposition. The transposedBy: method computes and returns
an array which is a transposition of the receiver according to the
transposition vector passed as argument. A transposition involves
restructuring a multi-dimensional array (represented in OOPAL by
nested arrays) so that its coordinates appear in a permuted order.
The element of the transposition vector at index i specifies the di-
mension of the receiver which becomes dimension i in the result.
For example, {1, 2, 0} as a transposition vector specifies that the
first dimension of the result is the second dimension of the receiver,
that the second dimension of the result is the third dimension of the
receiver and that the third dimension of the result is the first dimen-
sion of the result. Suppose we compute N := (A >< @ (F at:@
P >< F pilot) airplane) @@count. N is an array of arrays that
gives the number of flights, for each pilot, for each airplane. That
is, to get the number of flights associated with the pilot at index i
in P and the airplane at index j in A, we can compute (N at:i) at;j.
We can easily transpose N to get an array of arrays (say Nt) which
gives the number of flights for each airplane, for each pilot. That
is, we can turn rows into columns and columns into rows. To do
that we execute Nt := N transposedBy:{1, 0}.
The transposition operation, which enables us to reorganize nested

arrays easily, is very useful in OLAP-like data processing.

7.2 A Final Example

Imagine we want to identify the pilots who are in charge of at
least one flight for each airplane in the fleet. In a traditional object
language like Objective-C, we would write the following code.

Objective-C

Airplane *airplane;

Pilot *pilot;

Flight *flight;

NSMutableArray *result = [NSMutableArray array];
NSEnumerator *pilotEnumerator = [P objectEnumerator];
while (pilot = [pilotEnumerator nextObject])

NSEnumerator *airplaneEnumerator = [A objectEnumerator];

while (airplane = [airplaneEnumerator nextObject])

NSEnumerator *flightEnumerator = [F objectEnumerator];
while (flight = [flightEnumerator nextObject])
{

if ([flight airplane] == airplane && [flight pilot] == pilot)
break;

}
if (!flight) break;
if (lairplane) [result addObject:pilot];

return result;

Below, we present the same query expressed in F-SCRIPT. The
following technique is used by the F-SCRIPT code: for each pilot
we determine the list of airplanes on which he has at least one flight,
using a join. We then use compression to select the pilots for whom
the list of airplanes contains as many elements as the total number
of airplanes in the fleet.

F-SCRIPT
P at:(F at:@ P >< F pilot) airplane @distinct @count = A count

8. IMPLEMENTATION NOTES

The OOPAL model has been implemented in F-SCRIPT, an open-
source object-oriented scripting language available at www.fscript.org.

8.1 OOPAL in F-SCRIPT

F-SCRIPT is an interpreted and interactive language implemented
in Objective-C. F-SCRIPT adopts the Smalltalk syntax. Integration
of OOPAL into F-SCRIPT required extending the original Smalltalk
syntax and changing the semantics of message send to handle mes-
saging patterns. F-SCRIPT is based on the Mac OS X native ob-
ject model. The classes representing arrays and the other basic
classes such as numbers or strings are Mac OS X classes. Ar-
ray programming-specific operations (compression, reduction, etc.)
are implemented in the form of methods. All the objects based on
the Mac OS X object model can be manipulated using F-SCRIPT.
For example, in [38], messaging patterns are used to manipulate
Mac OS X native GUI widgets.

In F-SCRIPT, the main modules related to OOPAL are the parser
for the messaging pattern syntax, the messaging pattern interpreter,
some optimized array classes and the various array programing op-
erations (e.g., reduction, compression). Each module is well iso-
lated from the others, and provides a relatively simple function,
making it easy to implement and optimize. For instance, the mes-
saging pattern interpreter, which could be considered as one of the
trickiest modules in the group, has less than two hundred lines
of Objective-C code, including the optimizations described in sec-
tion 8.2.

8.2 Optimizing Performance

The performance and optimization techniques of array program-
ming languages have been widely examined and written about, in
particular, due to the frequent use of array programming in the field
of high performance financial and scientific calculations. Gener-
ally speaking, most of the principles described in the literature can
be applied to OOPAL. In this section, we look at a few OOPAL-
specific issues linked to the unification of array programming and
OOP, and show how we use an optimized messaging pattern en-
gine and smart arrays in F-SCRIPT. The benchmarks were carried
out on a 800MHz PowerPC G4 running Java 1.4.1, GCC 3.1, and
F-SCRIPT v1.2.4.

Table 1: Memory footprint of an array containing five million
numbers

F-SCRIPT without smart arrays | 176 MB
F-SCRIPT with smart arrays 40 MB
C 40 MB

Even though some optimizations are based on optimizing Boolean
and number arrays, they are relevant in the specific context of in-
tegration of array programming in OOP. Indeed, in the OOPAL
model, operations on number and Boolean arrays are very frequent
during the manipulation of any object. The fundamental operations
offered by OOPAL for manipulating any type of object (compres-
sion, joins, reduction, transposition . ..) and the various associated
idioms are intrinsically based on the generation and manipulation
of number and Boolean arrays. For example, the F-SCRIPT ex-
pression P age < 35 & (P salary > 3000) \ #| which determines
whether any pilot under the age of thirty-five has a salary greater
than 3000, generates and uses five number and Boolean arrays.

Optimized Messaging Pattern Engine. OOPAL messaging pat-
terns may be compiled or interpreted. If you have a code generator
and a compiler (whether static or just-in-time), you can translate
them in compiled native code implementing nested loops. If you
do not have these modules or if you want to avoid them as they are
both cumbersome and complex, you can interpret the messaging
patterns at run-time using a messaging pattern interpreter. To avoid
adversely affecting performance, optimized (i.e., compiled) imple-
mentations of the most common patterns can be integrated in the
interpreter itself. In F-SCRIPT, the messaging pattern interpreter
contains optimized implementations for several patterns, including
@, @:, @:@ and @1:@2. Benchmarks show that, in F-SCRIPT,
sending a simple message to each element of an array using the @
pattern is 23 percent faster with this optimization.

Smart Arrays. OOPAL offers the language user the notion of het-
erogeneous object arrays. But in practice, in most common cases of
use, most arrays are in fact homogenous. In addition, as we already
mentioned, array programming-specific operations produce a ma-
jority of number and Boolean arrays. These properties enable the
implementation of the main OOPAL model optimizations. At the
base of these optimizations are what we refer to here as smart ar-
rays: arrays capable of dynamically adapting at run-time their inter-
nal representation to their content so as to optimize the operations
carried out on the arrays and the memory footprint. In F-SCRIPT
the class FSArray acts as a facade that hides the fact that differ-
ent optimized classes are used to specifically handle certain arrays
such as Boolean and numerical arrays. In an array language like
F-SCRIPT, this optimization is very useful because of the perva-
siveness of homogenous arrays. In F-SCRIPT number and Boolean
arrays use optimized internal representations and operations:

e Number and Boolean arrays use an internal representation
corresponding to native data arrays of the platform. For ex-
ample, in conventional 32-bit architectures, a double-precision
number array uses, as internal representation, a contiguous
memory space made up of 64-bit words where each word
represents a double-precision number in native format. Ta-
ble 1 shows the memory footprint, in mega bytes, of an array
which contains five million double-precision numbers.

e Sending of messages to elements of these arrays is automat-
ically bypassed and replaced by the direct application of na-
tive operations. For example, if X is a number array and

y a number, the expression X + y does not generate costly
sending of messages but, rather, the application of a native
addition operation for each element in X.

e Several operations are optimized to take advantage of smart
arrays. For example, reduction of a Boolean array by a logi-
cal OR will stop as soon as a true value is found in the array.

e Dynamically adapting arrays and the use of optimized oper-
ations and representations are transparent for the user who
only manipulates object arrays, except when talking about
the object identity of numbers, which can be changed by op-
timized representations. When we place an object represent-
ing a number in a smart array and then retrieve it, the result is
an object with the same value as the object we placed in the
array. However, there is no guarantee that it will be the same
object in memory. This modification of the conventional se-
mantics of object arrays has few consequences, given that the
notion of object identity is almost never used with numbers.

e The way in which arrays dynamically adapt their internal
representation is based on heuristics that make it very fast.
For example, arrays that have been heterogeneous once in
their lifetime never check their content to determine if they
could benefit from a homogeneous-optimized internal repre-
sentation. This heuristic is based on a hypothesis that we
can practically summarize as follows: heterogeneous arrays
rarely become homogeneous. More generally, the internal
representation that an array possesses at a certain point in
its lifetime tells something about the way the array has been
used so far. This something” helps the array to determine
the likely and unlikely evolutions of its content and usage.
This enables it to implement the dynamic adaptation mecha-
nism efficiently.

e The F-SCRIPT smart array system is designed to be extensi-
ble. It is based on an object-oriented framework which facil-
itates the definition of new types of internal representations
for arrays and the implementation of operations optimized
for these representations. It is thus possible to define opti-
mized operations and representations for arrays containing
objects other than numbers and Booleans.

Combined with smart arrays, the OOPAL model ensures both
code conciseness and good performance for array expressions. It
helps F-SCRIPT to overcome the handicaps of being interpreted,
dynamically typed, and a “pure object” language in which any
number or Boolean is manipulated by sending a message. For in-
stance, table 2 compares the code and time in seconds needed to add
two number arrays element-wise in F-SCRIPT, Java and C. Each ar-
ray contains five million of double precision numbers.

Optimizing for Hardware. Array programming has been noted to
be well suited to various hardware architectures such as vector pro-
cessors and parallel architectures (see [1, 5, 9, 12, 14, 15, 24]). For
instance, short vector architectures, which are found in the form of
SIMD (Single Instruction, Multiple Data) units in mainstream mi-
croprocessors, are well suited to the ultra-fast processing of entire
arrays. Array programming, which is intrinsically SIMD, makes
it possible to use vector architectures in order to to optimize the
OOPAL model. Even in a pure object-oriented language, smart
arrays allow processes relating to arrays to be implemented in an
optimized manner - transparent to the user - by using native SIMD
instructions. For example, let us look at the expression P age < 35

Table 2: Code and time required to add two arrays containing five million numbers each

Code Time

Java using objects

final int size = 5000000; Ts
ArrayList C = new ArrayList(size);
for (inti=0;i < size; i++)

C.add(new Double(((Double)(A.get(i))).doubleValue()
+ ((Double)(B.get(i))).doubleValue()));

Java using primitives | final int size = 5000000; 0.5s
double[] C = new double[size];
for (inti=0;i < size; i++) Cli] = A[i]+B]i];

C const int size = 5000000; 0.5s
double *C = (double *)malloc(size*sizeof(double));
for (i = 0; i < size; i++) Cli] = A[i]+B]i];

F-SCRIPT

C=A+B

0.5s

& (P salary > 3000) \ #|, which determines whether any pilot un-
der the age of thirty-five has a salary greater than 3000. Of the six
operations included in this expression (five messaging patterns and
a reduction), four could be directly implemented using the vector
unit: this involves two comparisons, a logical AND and a reduc-
tion. On an Altivec unit, the instructions vec_cmpgt, vec_cmplt,
vec_and and vec_any_eq could be used. However, it should be
noted that the optimization of basic operations on arrays does not
guarantee that performances will be improved. Indeed, without
some kind of code consolidation (see section 8.3 Loop Fusion and
Array Reduction), each of these operations requires a full iteration
on one or more arrays and, therefore, exchanges of data between
the processor and the memory. If memory access is slow in relation
to processor speed, then a bottleneck will develop, which detracts
from the full processing power of the vector unit [43]. For example,
F-SCRIPT uses the vector unit to implement the basic logical oper-
ations on arrays of Booleans. On machines with slow memory bus,
the performance improvements are fairly slight. In practice, it is
the most complex operations (those which require many primitive
instructions with each iteration on each element of the arrays be-
ing processed), which reap the greatest benefits from the use of the
vector unit [40]. For the others (like basic logical operations), the
performance improvement is closely related to the memory access
speed, which can vary greatly from architecture to architecture.

8.3 Other Possible Optimizations: Loop Fu-
sion and Array Reduction

Loop fusion and array reduction minimize the number of loops
and the creation of temporary arrays during expression evaluations.

T = new array
for each element e in P do
s =send message "salary"toe R =new array

addstoT for each element e in P do
end do s = send message "salary" to e
P salary > 3000 R = new array) b = send message "> 3000" to s
for each element e in T do add b to R

b = send message ">3000"to e enddo
addbtoR return R
end do
return R

Algorithm for the evaluation
Array of the expression. Note that
expression there are two loops and one
temporary array.

Algorithm after loop fusion
and array reduction. Note
that there is one loop and
no temporary array.

Figure 7: Example of loop fusion and array reduction in an
array/object-oriented context.

Note that loop fusion and array reduction have not yet been im-
plemented in F-SCRIPT. These are very important techniques used
by some array languages to improve performance [31]. However,
these optimizations cannot be applied blindly. They change the or-
der of operation and this can modify the semantics of the evaluated
expressions. In some cases, however, the language has enough in-
formation to determine that loop fusion retains correct evaluation
semantics. This is the case when the language can determine that
sub-expression evaluations do not interact. However, the character-
istics of object-oriented programming (polymorphism, extensibil-
ity, etc.) make this difficult.

Within the scope of an interpreted language with no static typing,
in some situations, smart arrays can enable the interpreter to effec-
tively determine the nature of the operations (in particular, deter-
mining that the operations do not modify the state of objects) thus
giving the interpreter the possibility of implementing loop fusion
and array reduction. In statically typed object-oriented languages,
loop fusion and array reduction can sometimes be applied at com-
pile time, as shown by the Expression Template system [49, 51],
which uses the C++ template engine to perform loop transforma-
tions at compile-time.

Some object models facilitate the implementation of loop fusion
and array reduction: [16] describes a model which enables reason-
ing about the disjointness of computational effects within the scope
of object-oriented programming and provides an extensive bibliog-
raphy on the subject.

9. REAL WORLD APPLICATIONS

The OOPAL model is used, through F-SCRIPT, in various fields
such as data analysis, game development, application scripting, or
software debugging. In this section we give two examples of real-
world usage that are independent of our research.

OOPAL in Astrophysics. F-SCRIPT is used at the department of
Astronomy & Astrophysics of the University of Toronto to inter-
actively filter and manipulate data coming from the Hubble Space
Telescope. Central to the objet model of this application is a Galaxy
class which offers many methods returning galaxy’s properties. Pro-
fessor Roberto Abraham reports:

F-SCRIPT lets one easily do pretty complex data min-
ing to drill down through samples of thousands of galax-
ies distributed throughout a very large parameter space

in order to isolate only those galaxies of interest. Amongst
the infinite number of things we might want to do is re-
strict some analysis to all galaxies with a certain class
with a median area above some value, and then work

out the mean value of a bunch of galaxy properties.
One certainly can’t anticipate beforehand what one will
want to do with the data. Since manipulation of the
data needs to be general, and the data analysis is in-
herently array based, embedding F-SCRIPT is perfect
for this application. It replaces having to filter mil-
lion of little ASCII text files with AWK and Perl, and
since the F-SCRIPT syntax automatically threads over
arrays no serious programming is needed to do really
complicated stuff.

For instance, here is an F-SCRIPT expression that returns the
isophotal magnitudes of the galaxies that have a major axis lesser
than 50: (galaxies where:galaxies majorAxis < 50) isophotal-
Magnitude. This example shows that the designer of the galaxy
model expresses the queries within the metaphor he created and is
not forced to manipulate naked data.

OOPAL in Music Theory. F-SCRIPT is used at the Technical
University of Berlin by the Interdisciplinary Research Group for
Mathematical Music Theory, in the context of the Rubato project
and the OpenMusic/Humdrum/Rubato (OHR) project. F-SCRIPT
is used to aid workflow between Music analysis tools making it
possible to specify music-theory material (for instance, a harmonic
analysis theory) and to exchange it between existing tools (i.e.,
OpenMusic and Rubato). OpenMusic is able to automatically gen-
erate F-SCRIPT code which manipulates Rubato’s objects. Among
other things, F-SCRIPT is used to implement some music-related
algorithms. For instance, an F-SCRIPT program has been devel-
oped that makes it possible to test a new approach to harmonic
analysis suggested by Fred Lerdahl within the existing applica-
tion framework of a Riemannian functional analysis implementa-
tion (the Harmo-Rubette). Jorg Garbers, member of the Music The-
ory Research group, notes that messaging patterns are extensively
used as well as reduction and iota’ operations. [17] contains further
description of how F-SCRIPT is used in this context.

10. RELATED WORK

Several teams have explored integration of object technology and
array programming. In most cases, their goal has been to study
how object technology could enhance an existing array language.
See [2,4,7,8, 11, 18, 19, 33, 41, 44, 48]. OOPAL takes a rather
different approach as it involves bringing the notions of array pro-
gramming to the object world. Its goal is therefore to determine the
minimal set of modifications that must be made to the traditional
object model in order to take advantage of the possibilities of array
programming. To our knowledge, little research has been carried
out in this area.

Marcel Weiher [52], proposes a powerful model based on dy-
namic wrappers (a.k.a. trampolines), which enables high-order
messaging. This provides an alternative approach to OOPAL’s
messaging pattern for high-order messaging. Unlike OOPAL, this
model can be attached to a dynamic object language without need-
ing to modify its syntax or semantics. However, it does not provide
a notation as convenient as the one offered by OOPAL.

Several libraries provide array programming operations for ex-
isting object-oriented languages. For instance, SmartArrays [10],
developed by APL gurus, provides an advanced array programming
library for C++, Java, and C#. Other examples include the Numer-
ical Python package, and Numarray [21], its successor, which add

Siota is an indices generator, i.e., a method that allows one to easily
create arrays of integers. It is widely used in array programming,
and has been adapted to OOPAL.

array programming operations to Python, and the Blitz++ library
[50] for C++. The fundamental difference between the OOPAL
model and such libraries is that these libraries are oriented towards
numeric computing, whereas OOPAL attempts more fundamental
integration between object-oriented programming and array pro-
gramming to support the manipulation of any kind of object.

The confrontation between object-oriented databases and rela-
tional databases has led to the development of object query lan-
guages, sometimes based on sophisticated object algebras and cal-
culi, which provide high-level object-oriented querying models.
However, these developments, at least for the moment, have not in-
fluenced mainstream object-oriented programming languages such
as C++, Java, C#, or Smalltalk. On the contrary, in their most recent
incarnations (e.g., JDO Query Language, EJB Query Language),
object query languages adopt quite a low profile. They are merely
used as a minimalist interface to an underlying database, for boot-
strapping the data navigation and manipulation process (i.e., getting
some elements of the object graph out of the database) which is then
carried out with the host object-oriented programming language.
While object query languages are mainly designed around the in-
teraction with persistent objects stored in a database, the OOPAL
model is primarily designed to interact with instantiated objects ly-
ing in memory. Indeed, the problem we are tackling with OOPAL
is to provide a higher-level programming model in the context of
OOP, not a database query language. One important consequence
of this difference in focus is the support for encapsulation. For per-
formance reasons, most of the query languages provided by object-
oriented databases or object/relational mapping tools break encap-
sulation. For example, the current version of JDOQL [46] does
not support method invocation of persisted objects but only of-
fers direct access to instance variables. The performance problem
that justifies breaking encapsulation is due to the fact that database
query languages do not actually manipulate objects but object rep-
resentations stored on disk, which is a different thing. In such
a case, the use of indexes and the minimization of instantiations,
which can be achieved by breaking encapsulation, are required in
order to achieve good performance. On the contrary, in the context
of a general purpose object-oriented language, encapsulation is of
paramount importance, and is well supported by OOPAL.

High-level object-oriented languages like Smalltalk or Python
commonly provide sophisticated collections classes associated with
high-level operations and constructs. A key difference between this
approach and OOPAL is that the latter allows one to think in terms
of whole sets of objects, while conventional object collection proto-
cols require thinking in terms of iteration over collection elements.
For instance, compare the code needed to generate an array con-
taining the names of all the pilots:

e Smalltalk: P collect:[:aPilot| aPilot name].
e Python: [aPilot.name() for aPilot in P].

e Ruby: Pcollect {|aPilot| aPilot.name}

e F-ScrIpT: P name.

OOPAL’s association of messaging patterns and array program-
ming operations subsumes, for most purposes, these common high-
level models by making it possible to express object manipula-
tions in a more readable way and with less code. For instance,
the collection-protocol-based Smalltalk code to generate an array
that contains the names of all the pilots whose age is greater than
50 is:

(P select:[:aPilot| aPilot age > 50]) collect:[:aPilot| aPilot name]

The same is expressed using the OOPAL model with:
P name where: P age > 50

As well as showing radical gains in readability and conciseness,
this example illustrates the fact that OOPAL helps to decrease the
use of lambda expressions. This property of array programming
was noted by John Backus in [3]:

We owe a great debt to Kenneth Iverson for showing us
that there are programs that are neither word-at-a-time
nor dependent on lambda expressions.

We should also note that OOPAL’s array expressions allow com-
bining multiple arrays while traditional internal iterators like se-
lect: only iterate over a single collection®.

Finally, it should be noted that several array extensions to exist-
ing programming languages have been produced, sometimes with
broad acceptance, as with Fortran which has incorporated array
programming features in recent versions of the language and in
the official standard (see [35]). In some cases, similarities with
OOPAL can be observed. For instance the @ sign in a messaging
pattern is reminiscent of the « sign applied to a function and of
the - sign in the context of an a-factored expression in Connection
Machine Lisp [22].

11. CONCLUSION

On one hand, object-oriented programming provides good sup-
port for data modeling but it falls short for the expression of ma-
nipulations of entire sets of objects. This lack of expressiveness of
the object-oriented approach was one of the reasons why some re-
lational advocates saw object-oriented databases as a twenty-year
step backwards. On the other hand, array programming supports
the manipulation of entire sets of data and avoids the use of explicit
loops, but does not support objects.

This article presented the OOPAL model that defines the inte-
gration of array programming in object-oriented programming. It
is based on an extension of the concept of method invocation which
implies a slight syntactic extension, and the addition of certain ar-
ray manipulation methods, which do not call for the modification
of the target language’s syntax.

The manner in which F-SCRIPT handles encapsulation, inheri-
tance, and polymorphism has not been addressed in this paper due
to the similarity with other dynamic language such as Smalltalk.
In the OOPAL model these concepts are orthogonal to array pro-
gramming and don’t need to be specifically re-designed to fit into
the world of array programming. This point is clearly shown by
the fact that F-SCRIPT allows standard Objective-C objects to be
manipulated.

In OOPAL, array programming and OOP fit well together. Not
only can these two programming models benefit from each other’s
advantages, but they act synergically. While array programming
makes it possible to write code with few explicit loops, OOP’s
dynamic binding decreases the use of explicit conditional control
structures. It just so happens that the need to use explicit condi-
tional control structures usually hinders the use of array program-
ming, because it makes it harder to express array-oriented algo-

5In [30], Thomas Kiihne proposes a new iteration pattern, named
“transfold”, which does not sufter from this lack of flexibility.

rithms. OOP, which favors a coding style that is free from these
structures, naturally allows for extended use of array programming.

The array programming world is rich. It is full of intriguing and
powerful data manipulation techniques and idioms, developed and
refined by thousands of creative people over nearly half a century
of intensive research and real-world system design. By integrating
array programming in object-oriented programming, the OOPAL
model shows how object-oriented programming can benefit from
a large proportion of these developments. This provides a high-
level notation which makes it possible to easily express complex
object manipulations. The real-world applications developed with
F-SCRIPT have shown that the integration of array technologies
with object-oriented programming adds a considerable amount of
power and ease-of-use to the latter.

12. ACKNOWLEDGEMENTS

We would like to thanks Noury Bouraqadi, Jorg Garbers, Ralph
Johnson, Joseph R. Kiniry, Brid Marire, Oscar Nierstrasz, Hannah
Riley, and Roel Wuyts for the their feedback on early versions of
this article.

13. REFERENCES

[1] E. Albert, K. Knobe, J. D. Lukas, and J. Guy L. Steele.
Compiling Fortran 8x array features for the connection
machine computer system. In Proceedings of the
ACM/SIGPLAN conference on Parallel programming:
experience with applications, languages and systems, pages
42-56. ACM Press, 1988.

[2] M. Alfonseca. User interfaces with object-oriented

programming in APL2. In Proceedings of the conference on

Designing the future, pages 1-11. ACM Press, 1996.

J. Backus. Can programming be liberated from the von

neumann style?: a functional style and its algebra of

programs. Communications of the ACM, 21(8):613-641,

1978.

J. P. Benkard. An epistemology of APL. In Proceedings of

the APL9S conference on Array processing language, pages

76-90. ACM Press, 1998.

R. Bernecky. The role of APL and J in high-performance

computation. In Proceedings of the international conference

on APL, pages 17-32. ACM Press, 1993.

[6] P. Berry. APL 360 Primer. IBM, third edition, 1971.

[7] B. Best. Object-oriented programming and APL

computer-language.

http://www.benbest.com/computer/oopapl.html.

P. Bottoni, M. Mariotto, and P. Mussio. LiSEB: a language

for modeling living systems with APL2. In Proceedings of

the international conference on APL : the language and its

applications, pages 7-16. ACM Press, 1994.

[9] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka.
Fortran 90D/HPF compiler for distributed memory MIMD
computers: design, implementation, and performance results.
In Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, pages 351-360. ACM Press, 1993.

[10] J. A. Brown and J. G. Wheeler. SmartArrays for the APL
programmer. In Proceedings of the 2002 conference on APL,
pages 50-60. ACM Press, 2002.

[11] R. G. Brown. Object oriented APL: an introduction and
overview. In Proceedings of the international conference on
APL-Berlin-2000 conference, pages 47-54. ACM Press,
2000.

[3

—

[4

—

[5

—

[8

—

[12] T. A. Budd and R. K. Pandey. Compiling APL for parallel
and vector execution. In Proceedings of the international
conference on APL "91, pages 80-87. ACM Press, 1991.

[13] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin,

L. Snyder, and W. D. Weathersby. ZPL: A machine
independent programming language for parallel computers.
IEEE Transactions on Software Engineering, 26(3):197-211,
2000.

[14] W.-M. Ching. Automatic parallelization of APL-style
programs. In Conference proceedings on APL 90: for the
future, pages 76-80. ACM Press, 1990.

[15] W. M. Ching and A. Katz. An experimental APL compiler
for a distributed memory parallel machine. In Proceedings of
the 1994 ACM/IEEE conference on Supercomputing, pages
59-68. ACM Press, 1994.

[16] D. Clarke and S. Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. In Proceedings of
OOPSLA 2002, pages 292-310. ACM Press, 2002.

[17] J. Garbers. Kit-mamuth: Zwischenbericht
softwareentwicklung. Technical report, Technical University
of Berlin, 2001.

[18] M. Gfeller. Object oriented programming in AIDA APL. In
Conference proceedings on APL as a tool of thought, pages
164-168. ACM Press, 1989.

[19] J. J. Girardot and S. Sako. An object oriented extension to
APL. In Proceedings of the international conference on APL,
pages 128-137. ACM Press, 1987.

[20] K. Glazebrook and F. Economou. PDL: The Perl Data
Language. Dr. Dobb’s Special Report, 1997.

[21] Greenfield et al. Numarray, an open source project, 2002.
http://stsdas.stsci.edu/numarray/numarray.pdf.

[22] J. Guy L. Steele and W. D. Hillis. Connection machine lisp:
fine-grained parallel symbolic processing. In Proceedings of
the 1986 ACM conference on LISP and functional
programming, pages 279-297. ACM Press, 1986.

[23] H. Hellerman. Experimental Personalized Array Translator
System. Communications of the ACM, 7(7):433-438, 1964.

[24] W. D. Hillis and J. Guy L. Steele. Data parallel algorithms.
Communications of the ACM, 29(12):1170-1183, 1986.

[25] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: the story of Squeak, a practical Smalltalk
written in itself. In Proceedings of OOPSLA 1997, pages
318-326. ACM Press, 1997.

[26] K. E. Iverson. Computers and mathematical notation.
http://www.jsoftware.com/jbooks_frame.htm.

[27] K. E. Iverson. Math for the layman.
http://www.jsoftware.com/jbooks_frame.htm.

[28] K. E.Iverson. A Programming Language. John Wiley and
Sons, 1962.

[29] K. E. Iverson. Operators. ACM Transactions on
Programming Languages and Systems (TOPLAS),
1(2):161-176, 1979.

[30] T. Kiihne. Internal iteration externalized. In Proceedings of
the 13th European Conference on Object-Oriented
Programming, pages 329-350. Springer-Verlag, 1999.

[31] E. C. Lewis, C. Lin, and L. Snyder. The implementation and
evaluation of fusion and contraction in array languages. In
Proceedings of the ACM OOPSLA 1998 conference, pages
50-59. ACM Press, 1998.

[32] K.J. Lieberherr and A. J. Riel. Contributions to teaching
object-oriented design and programming. In Proceedings of

the 1989 ACM OOPSLA conference, pages 11-22. ACM
Press, 1989.

[33] R. MacDonald. Bob brown and object oriented APL.
http://www.torontoapl.org/ga/ga9605/bbrown.txt.

[34] C. D. McCrosky, J. J. Glasgow, and M. A. Jenkins. Nial: A
candidate language for fifth generation computer systems. In
Proceedings of the 1984 annual conference of the ACM on
The fifth generation challenge, pages 157-166. ACM Press,
1984.

[35] M. Metcalf and J. K. Reid. Fortran 90/95 explained (2nd
ed.). Oxford University Press, Inc., 1999.

[36] P. Mougin. F-Script Guide, 1999. http://www.fscript.org.

[37] P. Mougin. High-level object oriented programming with
array technology. In Proceedings of the international
conference on APL-Berlin-2000 conference, pages 163—175.
ACM Press, 2000.

[38] P. Mougin. Scripting cocoa with F-Script, Nov. 2001.
O’Reilly Network, http://www.oreillynet.com/pub/a/mac
/2001/11/30/scripting_fscript.html.

[39] NialSystem Corp. About the Nial language.
http://www.nial.com/AboutNial/AboutNial.html.

[40] I. Ollmann. Altivec tutorial v1.2, 2002.
http://www.simdtech.org.

[41] G. Reichard. Is there a way of combining array-processing
and object-oriented programming? In Proceedings of the
2001 conference on APL, pages 83—-86. ACM Press, 2001.

[42] h. Research Systems, Inc. IDL, the Interactive Data
Language.

[43] J. Sébot and N. Drach-Temam. Memory bandwidth: The true
bottleneck of SIMD multimedia performance on a
superscalar processor. In Proceedings of the 7th
International Euro-Par Conference Manchester on Parallel
Processing, pages 439—447. Springer-Verlag, 2001.

[44] D. A. Selby. An object-oriented APL2. In Proceedings of the
international conference on APL : the language and its
applications, pages 179-184. ACM Press, 1994.

[45] A. Snyder. Encapsulation and inheritance in object-oriented
programming languages. In Conference proceedings on
Object-Oriented Programming Systems, Languages and
Applications, pages 38—45. ACM Press, 1986.

[46] Sun-Microsystems. Java Data Object specification,1.0, 2002.

[47] K. Systems. K user manual, 1998.
http://www.kx.com/download/documentation.htm.

[48] N.J. Thomson. J - The Natural Language for Analytic
Computing. Research Studies Press, 2001.

[49] T. L. Veldhuizen. Expression templates. C++ Report,
7(5):26-31, June 1995.

[50] T.L. Veldhuizen. Arrays in blitz++. In Proceedings of the
2nd International Scientific Computing in Object-Oriented
Parallel Environments (ISCOPE’98), Lecture Notes in
Computer Science. Springer-Verlag, 1998.

[51] T. L. Veldhuizen and M. E. Jernigan. Will C++ be faster than
Fortran? In Proceedings of the 1st International Scientific
Computing in Object-Oriented Parallel Environments
(ISCOPE’97), Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[52] M. Weiher. Higher Order Messaging (HOM).
http://www.metaobject.com/papers’fHOM-Presentation.pdf.

[53] R. G. Willhoft. Comparison of the functional power of APL2
and Fortran 90. In Proceedings of the international
conference on APL "91, pages 343-357. ACM Press, 1991.

