


   
REALbasic Tutorial

Documentation by David Brandt and Dave McCollum; 
concept by Geoff Perlman.
© 1999-2000 by REAL Software, Inc. All rights reserved. 
Printed in U.S.A.

V 2.1, April 2000

Mailing Address REAL Software, Inc.
3300 Bee Caves Road
Suite 650-220
Austin, TX 78746

Web Site http://www.realsoftware.com

ftp Site ftp://ftp.realsoftware.com

Support support@realsoftware.com

Bugs/
Feature Requests

bugs@realsoftware.com

Sales sales@realsoftware.com

Phone 512-263-1233

Fax 512-263-1441



                                                          
Contents

CHAPTER 1 Introducing REALbasic 7

How to Use this Manual  .   .   .   .   .   .   .   .   .   .8
Who Should Use this Manual .   .   .   .   .   .   .   .8
Presentation Conventions   .   .   .   .   .   .   .   .   .9

Lesson Files  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  11

On Your Mark, Get Set, Go!    .   .   .   .   .   .   .  11

CHAPTER 2 Creating Windows 13

Starting Up REALbasic  .   .   .   .   .   .   .   .   .   .  14

REALbasic’s Windows    .   .   .   .   .   .   .   .   .   .  15

Building a Document Window   .   .   .   .   .   .  16
Adding an EditField .   .   .   .   .   .   .   .   .   .  17
Configuring TextField as a Text Editor .   .  21

Review  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  26

CHAPTER 3 Creating Menu Items 27

Adding a Select All Menu Item  .   .   .   .   .   .  28
Adding the Menu Item    .   .   .   .   .   .   .   .  28
Enabling the Menu Item .   .   .   .   .   .   .   .  30
Handling the Menu Item.   .   .   .   .   .   .   .  31

Review  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  33

CHAPTER 4 Working with Documents 35

Getting Started  .   .   .   .   .   .   .   .   .   .   .   .   .  36

Working with Text Documents   .   .   .   .   .   .  36
Creating the New Menu Item    .   .   .   .   .  36
Enabling the New Menu Item   .   .   .   .   .  37
Handling the New Menu Item   .   .   .   .   .  38
File Types .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  40
REALbasic Tutorial iii



 

iv

 

Contents

                                                                   
Saving Documents .   .   .   .   .   .   .   .   .   .   .   .  40
Adding the Save Menu Item  .   .   .   .   .   .  41
Adding Properties to TextWindow   .   .   .  41
Enabling the Menu Item .   .   .   .   .   .   .   .  43
Adding a SaveFile Method .   .   .   .   .   .   .  44
Using The Online Reference   .   .   .   .   .   .  46
Managing the TextHasChanged Property  48
Handling the Menu Item .   .   .   .   .   .   .   .  50
Adding a Save As Menu Item .   .   .   .   .   .  51
Adding a ‘Save Changes’ Dialog Box   .   .  52
Creating the Dialog Box  .   .   .   .   .   .   .   .  52
Displaying the Save Changes Dialog Box   58

Adding an Open Menu Item   .   .   .   .   .   .   .  61
Creating the Open Menu Item  .   .   .   .   .  61
Handling the Menu Item .   .   .   .   .   .   .   .  62

Review  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  64

CHAPTER 5 Working with Text 65

Getting Started  .   .   .   .   .   .   .   .   .   .   .   .   .  66

Configuring TextField for Styled Text   .   .   .  66

Implementing the Style Menu    .   .   .   .   .   .  66
Creating the Style Menu and its Menu Items 67
Enabling the Style Menu Items  .   .   .   .   .  68
Handling the Style Menu Items .   .   .   .   .  69
Managing Changes to the Text Selection  72

Creating the Size Menu    .   .   .   .   .   .   .   .   .  73
Creating the Size Menu and its Menu Items73
Enabling the Size Menu Items   .   .   .   .   .  75
Adding the Menu Handler .   .   .   .   .   .   .  76
Managing Changes to the Text Selection  78

Testing the Style and Size Menus   .   .   .   .   .  79

Printing Styled Text   .   .   .   .   .   .   .   .   .   .   .  79
Creating the Page Setup and Print Menu 
Items .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  79
Enabling the Page Setup and Print Menu 
Items .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  80
Contents



 

Contents

                                                          
Handling the Page Setup Menu Item   .   .  80
Handling the Print Menu Item   .   .   .   .   .  81
Testing Styled Text Printing    .   .   .   .   .   .  83

Review  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  83

CHAPTER 6 Creating Dynamic Menus 85

Getting Started  .   .   .   .   .   .   .   .   .   .   .   .   .  86

Implementing the Font Menu.   .   .   .   .   .   .  86
Building the Font Menu  .   .   .   .   .   .   .   .  87
Enabling the Font Menu .   .   .   .   .   .   .   .  89
Handling the Font Menu .   .   .   .   .   .   .   .  90

Review  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  93

CHAPTER 7 Communicating Between 
Windows 95

Getting Started  .   .   .   .   .   .   .   .   .   .   .   .   .  96

Implementing the Find Dialog Box   .   .   .   .  96
Creating the Menu Item  .   .   .   .   .   .   .   .  96
Enabling the Find Menu Item    .   .   .   .   .  97

Creating the Find Dialog Box  .   .   .   .   .   .   .  98
Creating the Dialog Box  .   .   .   .   .   .   .   .  99

Review  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .104

CHAPTER 8 Wrapping Things Up 105

Getting Started  .   .   .   .   .   .   .   .   .   .   .   .   .106

Using the Debugger  .   .   .   .   .   .   .   .   .   .   .106
Automatic Debugging Features    .   .   .   .106
Using the Debugger to Find Logical Errors 108

Building a Stand-alone Application  .   .   .   .113

Review  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .115

Index  117
Contents v



 

vi

 

Contents
Contents



     
CHAPTER 1 Introducing REALbasic
Welcome to REALbasic!

REALbasic is an integrated development environment based on a 
modern version of the BASIC programming language. The REAL-
basic application comprises a rich set of graphical user interface 
objects (commonly referred to as GUI), an object-oriented lan-
guage, an object browser, and a debugger.

REALbasic provides you with all the tools you need to build 
virtually any application you can imagine.

If you are new to programming, you will find that REALbasic 
makes it fun and easy to create full-featured MacOS and Win-
dows applications. If you are an intermediate or advanced pro-
grammer, you will appreciate REALbasic’s rich set of built-in tools.
REALbasic Tutorial 7



 

8

 

Introducing REALbasic

         
How to Use this Manual
The REALbasic Tutorial comprises a series of practical lessons for 
learning REALbasic. The lessons are structured so that each one 
can be completed in about 30 minutes. Since the material in each 
chapter builds on the previous one, you should plan on working 
sequentially through this tutorial.

During the course of this tutorial, you will use REALbasic to build 
a complete application. You will build a text editor application 
that is similar to SimpleText, the text editor included with Macin-
tosh computers. 

You will quickly learn to appreciate REALbasic’s power and ease 
of use. For the entire application, you will only need to create 
about 200 lines of programming code (SimpleText is built from 
over 20,000 lines of C/C++ programming code).

Who Should Use this Manual
The tutorial is written for someone who is new to programming. 
You do not need any knowledge of programming in order to 
complete this tutorial. 

If you have some programming experience, you may want to 
quickly review this tutorial so that you’ll become familiar with 
REALbasic’s integrated development environment (IDE) and 
language features.

If you are new to the MacOS, you should study the documentation that came 
with your computer. The documentation will help you learn how to use the 
mouse, menus, disks, and other aspects of the MacOS.
Introducing REALbasic



 

Presentation Conventions

  
Presentation Conventions

Italic type is used to emphasize the first time a new term is used, 
and to highlight import concepts. In addition, titles of books, 
such as REALbasic Developer’s Guide, are italicized. Courier 
type is used for programming code. Bold is used to indicate text 
that you will type while using REALbasic. 

When you are instructed to choose an item from one of 
REALbasic’s menus, you will see something like “choose 
File . New (x-N)”. This is equivalent to “choose New from the 
File menu (x-N)”. 

The items within the parentheses are keyboard shortcuts and 
consist of a sequence of keys that should be pressed in the order 
they are listed. The shortcut “x-O” means to hold down the 
Command key, press the “O” key, and then release the 
Command key.

When you see a paragraph with a large “i” to its left, you will know that the 
information provided will enhance your understanding of REALbasic.

When you see a paragraph with a big exclamation point to its left, you should 
pay careful attention to the paragraph contents. This style of paragraph is 
used to give you warning messages, or essential information.

A paragraph with an icon to its left like this lets you know that a 
series of instructional steps follows:

1. This is a sample step.

2. This is a second sample step in this set of instructions.
Introducing REALbasic 9



10

Introducing REALbasic
3. Hoping not to be left out, the third step is included with the other 
two steps.

Some steps ask you to enter lines of code into the REALbasic 
Code Editor. They appear in Courier (a monospaced font), like 
this:

If TextHasChanged then
 SaveChanges.ShowModal //display dialog & wait for input
 Select Case SaveChanges.ButtonPressed
 case "Don't Save"
 case "Cancel"
  Return True //cancel the quit
 case "Save" //call SaveFile to save the document
  TextWindow(Window(1)).SaveFile Window(1).Title, False
 End Select
 SaveChanges.Close //close the dialog
end if

When you enter code, please observe these guidelines:

■ Type each printed line on a separate line in the Code Editor. 
Don’t try to fit two or more printed lines into the same line or 
split a long line into two or more lines.

■ Don’t add extra spaces where no spaces are indicated in the 
printed code.

Whenever you run your application, REALbasic first checks your 
code for syntax errors as described in the section, “Automatic 
Debugging Features” on page 106. Syntax checking will direct 
your attention to the line of code that is causing problems. Check 
the line against the printed line. Also, if you have trouble getting 
your code to work, you can always open the lesson file for that 
chapter (described in the next section) and paste the correspond-
ing code into your project.
Introducing REALbasic



Lesson Files
Lesson Files
REALbasic files for each completed chapter are included on the 
CD in the folder “Tutorial Files” inside of your “REALbasic 
Folder.” You can compare your work at different stages of this 
tutorial with that given in the provided files. You can also start a 
new chapter using the completed file from the previous chapter.

Since completed REALbasic project files are provided for each 
chapter, you can skip over a chapter if you get stuck. Later, you 
can easily return a particular chapter to revisit the material.

On Your Mark, Get Set, Go!
You are now ready to begin learning REALbasic!
Introducing REALbasic 11



12

Introducing REALbasic
Introducing REALbasic



CHAPTER 2 Creating Windows
In this chapter you will be introduced to REALbasic and its Design 
Environment. You will learn how to:

■ Start Up REALbasic
■ Identify REALbasic’s windows
■ Build a document window that will hold the text of your text 

editor
■ Run your application
REALbasic Tutorial 13



14

Creating Windows

Window
Editor

Tools
Window

Colors
Window
Starting Up REALbasic
Locate the REALbasic application icon on your computer desktop 
(it’s in the folder in which you installed REALbasic), and double-
click it to start up REALbasic.

After REALbasic has started up, your screen should look like 
Figure 1:

FIGURE 1. The REALbasic Design Environment.

The screen shown in Figure 1 is from a computer running MacOS8. If you are 
running Mac OS 7.x, your screen may look slightly different.

Properties
Window

Project
Window
Creating Windows



REALbasic’s Windows
REALbasic’s Windows
As you can see in Figure 1 on page 14, there are five windows 
that open when you start up REALbasic:

■ The Project Window contains a list of all of the parts that 
make up your REALbasic application.

■ The Window Editor is the generic term for a window in the 
Design Environment. For a specific window, you will find its 
name listed in the Name property in the Properties Window.

■ The Tools Window contains icons representing interface 
objects that you can drag and drop onto the Window Editor. 
Interface objects are referred to as controls in REALbasic.

■ The Properties Window contains the list of the names of prop-
erties and their values for the currently selected object in your 
application. When you select a different object, the Properties 
Window changes to show the properties of that object. If no 
object is selected, the Properties Window is empty.

■ The Colors Window is used to store colors that you have 
defined for use in your REALbasic application. It consists of a 
palette of up to 16 colors. You can use the Colors Window to 
assign a color to a property that accepts a color. To assign a 
color to a palette element, click it to display the Apple Color 
Picker. To assign a color to an object property, drag a color 
from the Colors Window to a property value that accepts a 
color (such as the BackColor property of a Window object).

The Colors Window with three colors is shown in Figure 2 on 
page 16. 
Creating Windows 15



16

Creating Windows
FIGURE 2. The Colors Window with three colors assigned.

In addition, you can open the following window:

■ The Online Reference Window contains the REALbasic Lan-
guage Reference (Choose Window . Reference to display the 
online reference). Use it as a convenient alternative to the 
printed or electronic (PDF) version of the Language Reference.

You will learn more about the features of REALbasic as you 
progress through the Tutorial.

Building a Document Window
Now that the introductions between you and REALbasic are over, 
you can start building your own application!

When you start REALbasic, it opens an untitled window in a Win-
dow Editor with the name Window1. The name of the window is 
listed in the Project Window and its properties are shown in the 
Properties Window. This is as shown in Figure 1 on page 14.

Since this will be the window that contains the text editor, we will 
first give it a more meaningful name. 
Creating Windows



Building a Document Window
To rename Window1, do this:

1. Click on Window1’s name in the Project Window.

The Properties Window now shows Window1’s current properties.

2. Change Window1’s Name property to TextWindow and press the 
Return key.

When you press Return, Window1's name in the Project Window 
changes to TextWindow.

Next, we need to tell REALbasic to add a standard Grow Box to 
TextWindow so the user can resize the window.

3. In TextWindow’s Properties Window, check the GrowIcon property.

The Properties Window should now look like Figure 3.

FIGURE 3. TextWindow’s Properties Window.

Adding an EditField
In order to make TextWindow capable of handling text, we’ll use 
an interface object called an EditField control. This is the interface 
object that accepts text input from the end-user. The EditField 
tool in the Tools window is shown in Figure 4 on page 18.
Creating Windows 17



18

Creating Windows
FIGURE 4. The EditField Tool in the Tools Window.

To add an EditField to TextWindow, do this:

1. If TextWindow isn’t already open in the Window Editor, double-click 
its name in the Project Window to open it.

2. Locate the EditField Tool in the Tools Window and drag it onto 
TextWindow.

Since the EditField is the currently selected object, the Properties Win-
dow now shows its properties. You have just created an instance of 
the EditField class; the instance inherits all the properties of its class.

3. Use the Properties Window to change the Name property of the 
EditField from EditField1 to TextField.

After renaming the EditField, its Properties Window should look like 
Figure 5 on page 19.

EditField Tool
Creating Windows



Building a Document Window
FIGURE 5. The Properties Window after renaming EditField1.

Although you have just started building your application, you may 
want to run it now, just to see what happens. 

To run your application, do this:

1. Choose Debug . Run (x-R).

TextWindow appears and should look similar to that shown in 
Figure 6 on page 20.
Creating Windows 19



20

Creating Windows
FIGURE 6. First run of your application.

2. Type something in the TextField to try it out.

3. After you are done exploring, choose File . Quit (x-Q) to return to 
the Design Environment.

When you choose Run to launch your application, REALbasic automatically 
switches you to the Runtime Environment. The Runtime Environment is where 
you do “test runs” and debug your application. After you quit your applica-
tion, you return to the Design Environment.

TextWindow
Creating Windows



Building a Document Window
Configuring TextField as a Text Editor
The TextField that you just created is, obviously, not an adequate 
text editor. In a text editor, the user can type as much text as he 
wishes. Also, the text editing area must be the same size as its 
window. Right now, the TextField you placed inside of TextWin-
dow can handle only a small amount of text, all of which is on 
one line. To make a usable text editor, the TextField must have a 
scrollbar and accept many lines of text. In this section, you con-
figure TextField so that it functions as a text editor and resize it so 
that its size matches its window.

In the first series of steps, you will use the Properties Window to 
fix the left and top sides of TextField in the top-left corner of 
TextWindow.

To resize TextField so that it will handle multiple lines of text, do 
this:

1. Click TextField to select it, if it isn’t already selected.

2. Refer to the Properties Window and locate the Top and Left proper-
ties. Click to the right of the value corresponding to the Left prop-
erty and type -1. Press the Return key to set the property value. 

Notice how TextField moves to the left side of TextWindow. The 
value of -1 places the left edge of the TextField just outside the bor-
der of TextWindow.

3. Repeat step 2 for the Top property. Change its value to -1.

The TextField is now aligned with the top of TextWindow and 
should look like that shown in Figure 7 on page 22.
Creating Windows 21



22

Creating Windows
FIGURE 7. Document Window with moved Textfield.

4. Now, drag the exposed (lower right) resizing handle of the TextField 
until it is close to the resizing handle of TextWindow.

5. To align the right side of the TextField with the right side of 
TextWindow, drag the resizing handle of TextWindow.

The window should now look as shown in Figure 8:

FIGURE 8. The TextWindow after resizing.
Creating Windows



Building a Document Window
Next, you must tell REALbasic that you want TextField to accept 
as many lines of text as the user enters, display a scrollbar, and 
wrap text whenever a line of text reaches the right side of the 
TextField. This is done simply by assigning the MultiLine property 
to the TextField.

6. Select the MultiLine property of the TextField using the checkbox in 
the Properties Window.

The TextField now has a scrollbar. The Document Window should 
look similar to that shown in Figure 9. 

FIGURE 9. Document Window after adding the MultiLine property.

To run the application again, do this:

1. Choose Debug . Run (x-R). 

The text editing window appears.

2. Enter several lines of text. 

As you type you will notice that your lines wrap as they reach the 
end of the line. After you type enough lines to fill the window, the 
scrollbar will become active. You can use the scrollbar to get back to 
the top.

3. When you’re done typing, choose File . Quit (x-Q) to return to the 
Design Environment.
Creating Windows 23



24

Creating Windows
4. You should save your application project now. Choose File . Save 
(x-S). Save your project file with the name MySimpleText-ch2.

The title of the Project Window is now “MySimpleText-ch2”.

In fact, it’s always a good idea to save your project before running it. Doing so 
will help you avoid losing important work in the event that something unex-
pected happens while you are testing your application.

Lastly, you must configure TextField so that it remains the same 
size as its window when the user resizes the window using the 
window’s Grow box. Unless you do this, the TextField and the 
Window will be the same size only if the user never resizes the 
window. This is not realistic.

REALbasic provides a very simple way to accomplish this. The 
Lock properties are used to fix the distance between the edge of 
the window and the edge of the control. The distance between 
edges is maintained during resizing if the corresponding Lock 
property is selected.

To lock the size of the TextField to its window, do this:

1. In the Design environment, resize TextWindow to make it larger.

The TextField remains in place. 

2. Adjust TextWindow so that it is aligned once again with the Text-
Field.

TextWindow should look like that shown in Figure 10 on page 25.
Creating Windows



Building a Document Window
FIGURE 10. TextField after final adjustments. 

3. Select the TextField. Locate the LockLeft, LockTop, LockRight, and 
LockBottom properties in the Properties Window and select them 
using their checkboxes.

4. Now, resize TextWindow.

The TextField resizes as TextWindow resizes.

5. Run your application to test the resizing feature.

6. Choose File . Quit (x-Q) to return to the Design environment and 
save your project once again.

At this point, you have created a very useful REALbasic object, 
TextWindow. TextWindow includes a TextField—an object derived 
from the EditField class that is configured for text editing. 
TextField inherits all the properties and methods of the EditField 
class. It is configured to accept multiple lines of text, has a vertical 
scrollbar, and is locked to its parent window. When you create 
another instance of TextWindow, you get all the properties of 
TextField “for free.” You’re going to do this later on in Chapter 4 
when you create a New item in the File menu.
Creating Windows 25



26

Creating Windows
Review
In this chapter you learned how to start up REALbasic, identify 
the windows of the Design Environment, add a multiline EditField 
to a document window, lock it to its window, and run your 
application.

To Learn More About: Go to:

REALbasic Design Environment REALbasic Developer’s Guide

REALbasic commands and language REALbasic Language Reference 
Creating Windows



CHAPTER 3 Creating Menu Items
In this chapter you will work with menus in REALbasic. You will 
learn how to:

■ Add a menu item to your application
■ Activate a menu item

You can continue working from the application you began in 
Chapter 2 or open the application “MySimpleText-ch2” in the 
Tutorial Files folder on your CD-ROM.
REALbasic Tutorial 27



28

Creating Menu Items
Adding a Select All Menu Item

In this exercise, you will add a Select All menu item to the Edit 
menu. There are three required steps for implementing a menu 
item:

■ Adding the menu item itself using the Menu Editor,
■ Enabling the menu item. By default, menu items are disabled 

unless you add code to enable them.
■ Adding a menu handler that tells REALbasic what to do when 

the user selects the (enabled) menu item. The menu handler 
can call other methods.

Adding the Menu Item
To add a Select All item to the Edit menu, do this:

1. Bring the Project Window to the front by choosing 
Window . Project (x-0) (Command-Zero).

2. Double-click the Menu object icon to open the Menu Editor.

3. Select the Edit menu in the Menu object window. 

4. Select the blank menu item at the end of the list, as shown in 
Figure 11.

FIGURE 11. The blank menu item selected.
Creating Menu Items



Adding a Select All Menu Item
In the Menu Editor, there is always a blank menu item on each 
menu. You use it to create new menu items; it is not really a part 
of the menu and does not appear when you run your application.

If you add a menu item by mistake, you can remove it by 
selecting it and pressing Delete.

5. In the Properties Window, enter Select All in the Text property area 
and press Return.

The Name property is automatically filled in as EditSelectAll.

6. Assign the letter A to the Command Key property and press Return.

7. Your Menu Editor and Properties window should look like those 
shown in Figure 12.

FIGURE 12. Menu Editor and Properties Window after adding the 
Select All menu item.

8. Close the Menu Editor.
Creating Menu Items 29



30

Creating Menu Items
Enabling the Menu Item
Since the Select All menu item applies to the TextField in 
TextWindow, we will add the code to enable the menu item to 
TextWindow. You will simply set the Enabled property of the 
menu item to True. This enables the Select All menu item 
whenever the user clicks on the Edit menu to display its items.

To enable the Select All menu item, do this:

1. Select TextWindow in the Project Window and press Option-Tab to 
open its Code Editor.

FIGURE 13. TextWindow’s Code Editor.

Using the Browser pane of the Code Editor, you can expand items to 
associate code with various events or objects. You can also expand or 
reduce the size of the Browser area by dragging the Column Divider 
to the left or right.

2. In the Browser, click on the disclosure triangle to the left of the 
Events icon and select the EnableMenuItems item.

This is the event handler that runs whenever a user is just about to 
display the menu items in a menu

3. Type the following code in the Code Editor:

EditSelectAll.Enabled=True

When you assign a value to a property of an object, you use the syn-
tax: objectname.propertyname = value. “EditSelectAll” is an object 

Code Editor 
Browser

Column divider
Creating Menu Items



Adding a Select All Menu Item
in the MenuItem class which has the Enabled property. The Enabled 
property is a boolean—it can only be assigned the values of True or 
False.

Your TextWindow Code Editor should look like that shown in 
Figure 14.

FIGURE 14. Select All Enabled in TextWindow.

4. Save your project as MySimpleText-ch3.

Handling the Menu Item
The last thing we need to do to make the Select All menu item 
functional is to add a menu handler and enter some code to 
perform the text selection. The menu handler runs automatically 
when the user actually chooses the Select All menu item.

To add a menu handler for the Select All menu item, do this:

1. With the Code Editor for TextWindow as the frontmost window, 
choose Edit . New Menu Handler… 

A New Menu Handler dialog box appears.

2. Choose EditSelectAll from the pop-up menu and click OK.

A new method called EditSelectAll appears in the TextWindow Code 
Editor in the Menu Handlers category, and the Code Editor displays 
the function declaration.
Creating Menu Items 31



32

Creating Menu Items
3. Type the following:

TextField.SelStart=0
TextField.SelLength=Len(TextField.Text)

This code uses two properties of an EditField object, SelStart and 
SelLength, to determine which text to select. The SelStart property 
sets the position of the first highlighted character and SelLength sets 
the length of the highlighted text, beginning at SelStart. The Len 
function is a global function that returns the length of the string 
passed to it. In this case, it is passed all the text in TextField. 

This code sets the start of the selection at the beginning of the text 
and sets the length of the selection to the length of the text in the 
TextField.

The TextWindow Code Editor looks like that shown in Figure 15.

FIGURE 15. EditSelectAll menu handler with code entered.

4. Save your project. Be sure to name the project “MySimpleText-ch3” 
if you haven’t already.

5. Run your application.

If you have any trouble compiling your application, check to see that you have 
renamed the EditField to TextField. If the control hasn’t been renamed, REAL-
basic won’t recognize references to TextField’s properties.

6. Type some text into the text editor and try out the Select All menu 
item. 

You should be able to select text using either the keyboard equiva-
lent or the menu item, as shown in Figure 16 on page 33.
Creating Menu Items



Review
FIGURE 16. Text selected using the Select All command.

7. When you’re done, choose File . Quit (x-Q) to quit your application 
and return to the Design Environment.

Review
In this chapter you learned how to add menu items to your 
application, to enable them, and to handle their events.

To Learn More About: Go to:

REALbasic Menus REALbasic Developer’s Guide: Chap-
ters 3, 7.

REALbasic commands and language REALbasic Language Reference 
Creating Menu Items 33



34

Creating Menu Items
Creating Menu Items



CHAPTER 4 Working with Documents
In this chapter you will work with documents in REALbasic. You 
will learn how to:

■ Create menu items for creating, opening, and saving docu-
ments

■ Add code to your application to implement the menu items
■ Add a ‘Save changes’ dialog box that is displayed when the 

user closes a document window or tries to quit the application 
with unsaved changes
REALbasic Tutorial 35



36

Working with Documents
Getting Started
Locate the REALbasic project file that you saved at the end of last 
chapter (“MySimpleText-ch3”). Launch REALbasic and open the 
project file. If you need to, you may use the file 
“MySimpleText-ch3” that is located in the “Ch 3 Files” folder.

Working with Text Documents
A text editor must be able to create, open, and save text docu-
ments. You will first add the ability to create new text documents. 
As you learned in the previous chapter, implementing a menu 
item involves three basic steps:

■ Adding the menu item to a menu
■ Enabling the menu item
■ Adding a menu handler

Creating the New Menu Item
To create the New menu item, do this:

1. Double-click the Menu item in the Project window and select the 
blank menu item in the File menu.

2. In the Properties Window, enter New in the Text area and N in the 
CommandKey property area.

REALbasic automatically assigns the Name FileNew.

3. In the Menu Editor, drag the New menu item to the top of the menu. 

Your Menu Editor should look similar to that shown in Figure 17. 
When you select the New menu item, the Properties window for 
that Item should look as shown in Figure 17.
Working with Documents



Working with Text Documents
FIGURE 17. Updated File menu.

Enabling the New Menu Item
The New menu item should be available for use whenever the 
Text Editor application is running — not just when a TextWindow 
is open. If you enabled the New menu item in the 
EnableMenuItems event handler for TextWindow (as you did for 
the Show All menu item), the New menu item would be available 
only when a document window is open. But suppose a user 
closes a document and then wants to create a new one. He can’t 
do it! This is no good.

To enable the New menu item at all times, you need to make this 
a characteristic of the application as a whole, not just a window. 
You can do this by making it a property of a built-in class in 
REALbasic called the Application class.

To enable the New menu item, do this:

1. With the Project Window in the front, choose File . New Class.

REALbasic adds a class to the project called Class1.

2. Using Class1’s Properties Window, change its name to App.

3. Using the Properties Window, change its Super property to Applica-
tion using the Super pop-up menu.
Working with Documents 37



38

Working with Documents
The App class now belongs to the application as a whole, not any 
particular window. Its Code Editor window opens automatically.

4. In the Code Editor for the App class, expand the Events item.

5. Highlight the EnableMenuItems event handler and enter the follow-
ing code:

FileNew.Enabled=True

Since FileNew is an object derived from the MenuItem class, it 
inherits all its properties and methods. This line of code sets the 
Enabled property of the menu item to True.

Handling the New Menu Item
After you add and enable a menu item, you need to add a menu 
handler that tells REALbasic what to do when a user chooses the 
item. Without the menu handler, the menu item would do 
nothing.

The menu handler for the New menu item creates a new object 
of type TextWindow. That is, it is an instance of the class of 
objects that has all the properties of TextWindow that you set in 
Chapter 2. TextWindow is a window that already has a TextField 
object in it that is properly configured to work as a text editor. 

To handle the New menu item, do this:

1. With the Code Editor for App in front, choose Edit . New Menu 
Handler… to create a menu handler for the New menu item.

If the Code Editor for the Application class is not in front, highlight it in the 
Project Window and press Option-Tab.

2. Select the FileNew menu handler and click OK.

3. Enter the following code into the Code Editor for the menu handler:

Dim w as TextWindow
w=New TextWindow
Working with Documents



Working with Text Documents

The Code Editor 
recognizes ‘TextWin
as a data type
The Dim statement creates a new object of type TextWindow but 
does not create the instance. That is done in the next line with the 
New operator. It actually instantiates the class and returns the new 
instance of that class in w. The new instance, w, is a clone of 
TextWindow and is displayed immediately because the Visible 
property of TextWindow was set to True in Chapter 2.

You may have noticed that the Code Editor sometimes tries to guess 
what you are typing. If it recognizes a word, it tries to complete the 
word using translucent text, as shown in Figure 18.

FIGURE 18. Clairvoyance in REALbasic.

If REALbasic’s guess is correct, press the Tab key to enter the word 
without typing the remaining characters. If the guess is incorrect, 
just keep typing.

4. Save your project and then switch to the Runtime environment to 
test the New menu item. 

As you can see, the New menu item creates a clone of the original 
default text window whose properties you specified earlier in the 
tutorial. Try it out even if no text window is open.

When you are finished, choose File . Quit to return to the Design 
environment. 

dow’ 
Working with Documents 39



40

Working with Documents
File Types

In order for your application to recognize specific types of files, 
you can define the valid file types for the application. By default, 
it recognizes files of type ‘text’. This is fine for this application, 
but you may want another application you write to recognize 
other common file types. For example, if you are writing a graph-
ics application, you will need to tell REALbasic that it needs to 
open files of type PICT, TIFF, and so forth. Also, if your application 
saves documents in its own format, REALbasic must know that 
file type as well.

You use the File Types dialog box to specify valid file types. You 
display the File Types dialog box by choosing Edit . File Types…. 
However, since REALbasic recognizes files of type text by default, 
you do not need to make any changes.

Saving Documents
Since saving documents occurs only when a document is already 
open, we will let the text editor window manage these tasks. This 
means that you will add a Save menu item to the TextWindow 
window. In this section, you implement the Save menu item. 
Activating the Save menu item involves these operations:

■ Enabling the item. The Save menu item should be enabled 
only when the contents of the current window have been 
changed—not all the time, as is the case for the New and 
Select All menu items.

■ Creating a menu handler. The menu handler tells the applica-
tion what to do when the user chooses the Save menu item. 
The menu handler that you will add calls a generic save-file 
method that actually accomplishes the save.
Working with Documents



Saving Documents
■ Adding a save-file method. The save-file method is called by 
the menu handler. It uses a FolderItem object to manage sav-
ing the contents of the window to a text file on disk.

Adding the Save Menu Item
To add the Save menu item, do this:

1. Open the Menu Editor in the Project Window.

2. Select the blank menu item in the File menu and use the Properties 
window to assign it the Text Save and CommandKey S.

REALbasic automatically assigns the name FileSave.

3. Drag the Save menu item between the New and Quit items.

The Menu Editor should now look like that shown in Figure 19.

FIGURE 19. Updated Menu Editor.

4. Close the Menu Editor and save your project.

Adding Properties to TextWindow
When we open a file in our application, we will need to keep 
track of the filename so that we can save changes. In order to do 
this, we will define a new property for TextWindow. It makes 
sense to add the property to TextWindow, since each copy of 
TextWindow that is opened in the application is associated with a 
Working with Documents 41



42

Working with Documents
specific file. We will also add a property to keep track of changes 
to the text in TextWindow.

To add the properties to TextWindow, do this:

1. Select TextWindow in the Project Window.

2. Press Option-Tab to open TextWindow’s Code Editor.

3. Choose Edit . New Property…

The Property Declaration dialog box appears.

FIGURE 20. The Property Declaration dialog box.

4. Enter Document as FolderItem and then click OK (a FolderItem is the 
name of the REALbasic object that refers to files and folders).

5. Choose Edit . New Property…

The Property Declaration dialog appears.

6. Enter TextHasChanged as Boolean and then click OK (Boolean is a 
data type which can take two values: True or False). In the section 
“Managing the TextHasChanged Property” on page 48 you will use 
this property to keep track of changes to the contents of the Text-
Field.

7. Click the disclosure triangle next to the Properties category label in 
the Code Editor for TextWindow.

The Document and TextHasChanged properties are now listed. The 
Properties category label itself is now in boldface, indicating that 
properties have been added.
Working with Documents



Saving Documents
Enabling the Menu Item
Since we want the Save menu item to be enabled only if there 
are unsaved changes to the document, the code will use the 
TextHasChanged property that you just added. The 
TextHasChanged property will function as a flag to let REALbasic 
know when the user has changed the contents of the TextField in 
TextWindow.

To enable the menu item, do this:

1. If the Code Editor for the TextWindow window is not already open, 
select TextWindow from the Project Window and open TextWin-
dow’s Code Editor (Option-Tab).

2. Click the disclosure triangle next to the Events category label to 
reveal the events (or double-click the Events label).

3. Select EnableMenuItems and add the following code to the end of 
the method:

If TextHasChanged Then
 FileSave.Enabled=True
End if

The Code Editor should look like that shown in Figure 21.

FIGURE 21. Updated EnableMenuItems Method.

4. Save your project.
Working with Documents 43



44

Working with Documents
Adding a SaveFile Method
Next, you need to specify the actions to be taken when the Save 
menu item is chosen by the user. This is done in the SaveFile 
method. This method will be called by the menu handler for the 
Save menu item as well as the menu handler for the Save As 
menu item that you will add in the section “Adding a Save As 
Menu Item” on page 51. This method will manage two cases:

■ The user chooses Save to save changes to an existing docu-
ment.

■ The user chooses Save or Save As to save an unsaved docu-
ment or to save an existing document under a new name.

In the latter case, the application must first present a save-file 
dialog box that lets the user enter a filename. In the former case, 
the application saves the document using the existing filename.

In this method, the Boolean parameter DisplaySaveDialog is used 
to force the method to present a save-file dialog box. In this way, 
the same method can be called to manage either type of save.

To add the SaveFile method, do this:

1. With the Code Editor for the TextWindow window in the front, 
choose Edit . New Method.

The New Method dialog box appears.

2. Enter SaveFile as the method name and FileName as String, 
DisplaySaveDialog As Boolean in the Parameter area. 

The dialog box should now look like Figure 22.
Working with Documents



Saving Documents
FIGURE 22. The New Method dialog box.

3. Click OK to close the dialog box.

The Code Editor for the SaveFile method appears. Note that the 
method name and parameters have been added. If you need to 
change the name or parameters, you can double-click the SaveFile 
method name in the Browser panel of the Code Editor.

In the next step, you will enter the code that will handle the two 
cases we described. Enter the following code for the SaveFile 
method into the Code Editor.

Dim f as folderitem
If Document = nil or DisplaySaveDialog = True then
 f=GetSaveFolderItem("text",FileName) 
 If f <> nil then //if the user clicked Save
  Title=f.Name 
  Document=f
 End if
End if
If Document <> nil then
 Document.SaveStyledEditField TextField
 TextHasChanged=False
End if

Remember to enter each printed line on a separate line in the Code 
Editor and do not split a long line into two lines.

If the Document property is undefined (i.e., its value is “Nil”), the 
document has not been saved, so the Save File dialog box must be 
presented. The GetSaveFolderItem function does this. 

The line “Title=f.Name” sets the Title property of TextWindow to the 
name of the Name property of the FolderItem (i.e., the document). 
“Title” is a property of the Window class that TextWindow has 
Working with Documents 45



46

Working with Documents
inherited. The next line, “Document=f” sets the Document property 
of TextWindow to the opened document. 

If the document exists (i.e., the FolderItem is not Nil), the Save As 
dialog box does not have to be presented; the user wants to resave 
an existing document under its current name. In this case, you use 
the SaveStyledEditField method of a FolderItem to save the contents 
of the TextField. “TextField” is the value of the parameter that is 
passed to the SaveStyledEditField method of the EditField class. We 
also reset the TextHasChanged Boolean property to False because 
the document has not changed since its last save.

The Code Editor should now look like this:

FIGURE 23. Code entered for SaveFile method.

We are not quite ready to call this method because we haven’t 
added the line of code that sets the TextHasChanged property to 
True when the text of TextField changes. This will be done in the 
section “Managing the TextHasChanged Property” on page 48.

Using The Online Reference
The SaveFile method uses two built-in methods to do the hard 
work: It calls the global method GetSaveFolderItem to present 
Working with Documents



Saving Documents
the save-file dialog box and the SaveStyledEditField method of 
the FolderItem class to save the contents of the EditField that is 
part of TextWindow. If you wish, you can look up these methods 
in the REALbasic Language Reference or, more conveniently, in 
the online version of the reference.

To look up GetSaveFolderItem, do this:

1. Choose Window . Reference.

The online help dialog box appears. The browser on the left lists all 
the main entries in the Language Reference, sorted by theme (cate-
gory) or alphabetically. The default sort order is by theme, but you 
can list the items alphabetically by clicking the Alpha tab at the top.

2. Expand the Files theme and highlight GetSaveFolderItem.

The window should look like Figure 24 on page 48.
Working with Documents 47



48

Working with Documents
FIGURE 24. The GetSaveFolderItem online documentation.

The main panel in Figure 24 presents the documentation for Get-
SaveFolderItem; hypertext links to related entries are in blue and are 
underlined. If you wish, you can click on a reference to FolderItem 
and then scroll down to read about the SaveStyledEditField method 
in the Methods table. 

Also, code examples that are shown in dotted rectangles in the 
online reference can be dragged into your Code Editor Window.

3. When you are finished, click the close box to put away the online 
reference.

Managing the TextHasChanged Property
The TextHasChanged property that is used in the SaveFile method 
must be assigned a value of True whenever there is a change to 
Working with Documents



Saving Documents
the text in the EditField. This is done in the TextChange event 
handler of TextField.

An event handler is a method that runs automatically when a 
particular event occurs. Each REALbasic interface object comes 
equipped with a set of empty event handlers. These are events 
that REALbasic is capable of detecting automatically. By adding 
code to an empty event handler, you specify what your applica-
tion will do when a user interacts with the object in a certain way. 
This is the basic concept of event-driven programming.

To see which event handlers are available for an EditField, bring 
the Code Editor for TextWindow to the front and expand the 
Controls item in the Browser. Then expand the TextField object. 
You will see a list of an EditField’s event handlers. It will look like 
Figure 25 on page 49.

FIGURE 25. TextField’s Event Handlers.

To manage the TextHasChanged flag, do this:

1. Highlight the TextChange event.

2. Add the following line of code to the blank event handler on the 
right of the divider:
Working with Documents 49



50

Working with Documents
TextHasChanged=True

Since you placed this line of code in the TextField’s TextChange event 
handler, it will run whenever there is a change to the text in the 
TextField. REALbasic has the job of figuring out when the text has 
changed.

In the online reference, the event handlers that are available for each control 
are described in the Events table for that control.

Handling the Menu Item
The menu handler for the Save menu item calls the SaveFile 
method that you just installed and passes the value of False to 
DisplaySavedDialog to prevent the method from displaying the 
save-file dialog box (unless it is an unsaved document).

To handle the menu item, do this:

1. Expand the Menu Handlers category in the Code Editor window to 
reveal the menu handlers.

2. Choose Edit . New Menu Handler, select FileSave from the pop-up 
menu, and click OK.

A new menu handler named FileSave is added to the Code Editor 
Browser.

3. Enter the following code:

SaveFile Self.title, False

This menu handler actually calls another method, SaveFile, that does 
the work. The terms that follow this call —Self.title, and False —are 
the values of the parameters that are passed to the SaveFile method.

Remember that SaveFile takes two parameters. The first, a string, is 
the default name of the file to be saved and the second is a Boolean 
that tells SaveFile whether it needs to display a “save changes” dia-
log box1. The term “Self” in “Self.title” is a global function. It is a 
reference to the parent window in which the method is running—in 
this case, TextWindow. The term “Title” is the Title property of the 

1. …which we haven’t created yet!
Working with Documents



Saving Documents
Window class—the string that appears in the window’s Title bar. You 
could leave “Self” off and the method would run anyway because it 
is assumed. 

When you run the application and save the document the first time, 
the default text will be “Untitled,” since that is the default window 
title. 

4. Save your project as MySimpleText-ch4.

5. Choose Debug . Run (x-R) to test your application.

Notice that the Save menu item is disabled initially.

6. Type some text. Use the Save menu item to save the document.

Notice that the Save menu item becomes disabled until you modify 
the text in the text editor.

7. Choose File . Quit (x-Q) to quit your application and return to the 
Design Environment.

Adding a Save As Menu Item
A Save As menu item performs the same function as a Save menu 
item, except that it always presents a save-file dialog box that 
allows the user to save the existing document under a new name. 
It is implemented in the same fashion as the Save menu item.

To add the Save As menu item, do this:

1. Double-click the Menu item in the Project Window and add a new 
menu item to the File menu with the Text Save As… and Name 
FileSaveAs (without the three dots).

2. Drag it between the Save and Quit menu items.

3. Open the EnableMenuItems Event in TextWindow’s Code Editor and 
add the following line of code to the existing method:

FileSaveAs.Enabled=True

4. From TextWindow’s Code Editor, choose Edit . New Menu Handler 
and choose FileSaveAs.
Working with Documents 51



52

Working with Documents
5. Enter the following code:

SaveFile Self.Title, True

This menu handler also manages the save using the SaveFile method 
but forces the save-file dialog box to be presented.

6. Test the Save and Save As commands by choosing Debug . Run. 
Enter some text and save it using the Save command. Then try the 
Save As command. Notice that the Save As command uses the exist-
ing window title as the default document name.

7. When you are finished, choose File . Quit to return to the Design 
environment.

Adding a ‘Save Changes’ Dialog Box
In ‘well-behaved’ applications, the application gives the user a 
chance to save changes to all open documents whenever he 
closes a window with unsaved changes or he chooses the Quit 
command. This application is no different. In this exercise, you 
will create, install, and activate the Save Changes dialog box 
shown in Figure 26.

FIGURE 26. The Save Changes dialog box.

Creating the Dialog Box
You create the dialog box by adding a new window to the project 
and adding the icon, button, and text controls to the window. 
The controls are added to a window by dragging them from the 
Tools Window (as you added the EditField in Chapter 2).
Working with Documents



Saving Documents
To create the dialog box, do this:

1. With the Project Window as the frontmost window, choose 
File . New Window.

REALbasic adds a window to the project and names it Dialog1.

2. Use Dialog1’s Properties Window to change its name to 
SaveChanges.

3. Change the window’s Width to 345 and Height to 160.

4. Change its Frame Property to Modal Dialog.

5. Deselect the CloseBox, GrowIcon, and ZoomIcon check boxes. 

This window will be used as a fixed-size dialog box.

The window’s Properties Window should now look like this:

FIGURE 27. Properties of the SaveChanges window.

The following steps add the controls to the empty dialog box.

1. Use the Tools Window to drag a Canvas control  to the top-left 
area of the SaveChanges window. This control will display the cau-
tion icon shown in Figure 26 on page 52.
Working with Documents 53



54

Working with Documents
The Canvas control is a blank drawing canvas. It comes equipped 
with a set of drawing tools that you use programmatically to cus-
tomize its appearance. 

2. Click on the Canvas control and, using the Properties Window, assign 
it the properties shown in Table 1. 

3. Open the Code Editor for SaveChanges by selecting SaveChanges in 
the Project Window and pressing Option-Tab.

4. Expand the Controls item and then expand the Canvas1 item.

The list of event handlers for a Canvas control appears. To create the 
caution icon, you will add code to the Paint event handler. This 
event handler runs whenever REALbasic detects that the Canvas con-
trol needs to be redrawn. 

5. Highlight the Paint item.

Notice that the parameter line for the Paint event handler contains 
one parameter — “g as Graphics.” The Graphics class in REALbasic 
contains the methods that allow you to completely customize the 
appearance of the Canvas control. They are your drawing tools.

6. Enter the following line of code:

g.DrawCautionIcon 0,0

The syntax “g.DrawCautionIcon” indicates that DrawCautionIcon is 
a method within the Graphics class. It simply calls a built-in method 
in the Graphics class that draws the icon.

If you wish, check out the drawing tools available in the Graphics class using 
the online reference. You will see that the DrawCautionIcon method takes two 
parameters— the x and y coordinates where the top-left corner of the caution 
icon is to be positioned.

The Code Editor should look like Figure 28 on page 55.

TABLE 1. Properties of the Canvas Control

Property Value

Left 13

Top 13

Width 46

Height 46
Working with Documents



Saving Documents
FIGURE 28. Code for the Caution Icon.

Next, you need to add the text that appears to the right of the 
Caution icon. This is done by placing a StaticText control in the 
dialog box. 

To add static text to the dialog box, do this:

1. Click on the StaticText tool in the Tools Window  and drag it to 
the right of the Canvas control in the SaveChanges Window. Notice 
how alignment lines appear and it snaps in alignment with the top 
of the Canvas control.

2. With the StaticText control selected, assign it the properties shown 
below.

The next series of instructions adds the buttons that are placed 
below the Canvas and StaticText controls.

TABLE 2. Properties of the StaticText Control 

Property Value

Left 72

Top 13

Width 255

Height 20

Text Save changes before closing?

MultiLine Checked (Yes)
Working with Documents 55



56

Working with Documents
To add buttons to the dialog box, do this:

1. Using the Pushbutton tool  in the Tools Window, drag three 
pushbuttons into the approximate positions shown in Figure 26 on 
page 52.

Drag the Don’t Save pushbutton first and let REALbasic align it with 
the left edge of the Canvas control. Then drag the Cancel and Save 
pushbuttons into place, using the horizontal alignment line to align 
them with the bottom of the Don’t Save button.

Next, you will assign properties to each button by successively select-
ing each button and changing its properties using the Properties 
Window. As with the other controls, you use the Properties Window 
to set the exact position of the object.

2. Select each pushbutton and make the property assignments shown 
in Table 3.

As with all controls, the Name property is the internal name of 
the object that you use to refer to the object. The Caption 
property is the label that appears in the Pushbutton. 

TABLE 3. Properties of the Don’t Save, Cancel, and Save Pushbuttons.

Property
Pushbutton

Don’t Save Cancel Save

Name Don’tSave Cancel Save

Left 13 191 272

Top 114 114 114

Width 78 60 60

Height 20 20 20

Caption Don’t Save Cancel Save

Default Not checked Not checked Checked

Cancel Checked Checked Not checked

Enabled Checked Checked Checked

Visible Checked Checked Checked
Working with Documents



Saving Documents
In the next series of steps, you assign a value to a property that 
identifies the button that is pressed. First you will declare the 
variable as a property of the SaveChanges window.

1. With the Code Editor for the SaveChanges window in front, choose 
Edit . New Property.

2. Enter ButtonPressed as String in the dialog box and click OK.

3. Expand the Controls item in the Code Editor for the Save Changes 
window.

The three Pushbutton controls are listed by name, along with the 
Canvas control, as shown in Figure 29.

FIGURE 29. Controls in the Save Changes dialog box.

4. In succession, expand each pushbutton control and click the Action 
item.

5. Add the code for Action shown in Table 4.

TABLE 4. Code for Pushbutton Control Actions.

Control Code

Cancel ButtonPressed="Cancel"
Hide

Don’t Save ButtonPressed="Don’t Save"
Hide

Save ButtonPressed="Save"
Hide
Working with Documents 57



58

Working with Documents
The code assigns a string to the ButtonPressed property so that 
we can later determine which button was pressed. The Hide 
statement is a method of the Window class and, not surprisingly, 
makes the window disappear. (You could have equivalently 
written “Self.Hide”, as the parent object — the window — is 
assumed.)

For example, the Code Editor for the Save pushbutton looks as 
shown in Figure 30.

FIGURE 30. Code for the Save Pushbutton.

Displaying the Save Changes Dialog Box
The final step is to add code that displays the SaveChanges 
dialog box when the user chooses the Quit menu item and there 
are unsaved changes to the contents of any open window. This is 
done in the CancelClose event handler in TextWindow.

The Quit menu item is different from the menu items that you 
have added in several ways. First, note that it is an instance of the 
QuitMenuItem class, rather than the MenuItem class. You can 
verify this by highlighting the Quit menu item in the Menu Editor 
and checking its properties. 
Working with Documents



Saving Documents
Second, it is enabled by default. You have been using the Quit 
menu item to return to the Design environment even though you 
have not enabled it. 

Finally, the Quit menu item also has its own menu handler—it calls 
the built-in Quit method. Not surprisingly, this method tries to quit 
the application. If any windows are open, it calls each window’s 
CancelClose event handler. This event handler gives you a chance 
to cancel the quit or perform actions prior to the quit. 

If the CancelClose event handler returns False (the default action) 
then the window's Close event handler will be executed. It 
means, “Don’t cancel the close.” If the CancelClose event 
handler returns True, REALbasic stops sending CancelClose or 
Close events and the application will not quit.

The CancelClose method that you will write displays the Save 
Changes dialog box if the TextHasChanged property is True. It 
then determines which button in the dialog box the user has 
clicked. Only if the user clicks the Save button is the SaveFile 
method called.

To add the CancelClose code, do this:

1. In the Code Editor for TextWindow, expand the Events item and 
highlight the CancelClose event.

2. Enter the following code:

If TextHasChanged then
 SaveChanges.ShowModal //display dialog & wait for input
 Select Case SaveChanges.ButtonPressed
 case "Don't Save"
 case "Cancel"
  Return True //cancel the quit
 case "Save" //call SaveFile to save the document
  TextWindow(Window(1)).SaveFile Window(1).Title, False
 End Select
 SaveChanges.Close //close the dialog
Working with Documents 59



60

Working with Documents
end if

The code tests whether the text has changed by testing the value 
of the TextHasChanged property, and, if it has, it displays the 
Save Changes dialog box. The SaveChanges.ShowModal 
statement runs the ShowModal method of the Window class (the 
Save Changes dialog box is an instance of the Window class and, 
therefore, inherits all its properties and methods). This method 
stops code execution at this statement until the user clicks one of 
the three buttons in the dialog. 

The Select Case structure determines which button the user 
clicks. If the Don’t Save button is clicked, the quit continues with-
out saving the document because CancelClose returns False and 
no method for saving the document is called. If the user clicks 
Cancel, the CancelClose event handler returns True, cancelling 
the close/quit. If the user clicks Save, the SaveFile method runs. Its 
parameters are the Title of the window (the Title property of the 
Window class contains the title of the window instance) and 
False—telling SaveFile not to display the Save Changes dialog box 
(since we’re already in a Save Changes dialog box!). The syntax:

TextWindow(Window(1)).SaveFile

is a reference to the second window (Window zero is the dialog 
box). “Window(1)” is the Window function, which returns a 
reference to the specified window. Since at least two windows 
are open at this point, REALbasic needs to know which instance 
of TextWindow you are working with at the moment.

3. Save your project.

The Code Editor for CancelClose should now look like Figure 31 
(minus the explanatory comments).
Working with Documents



Adding an Open Menu Item
FIGURE 31. The CancelClose method.

4. Test the SaveChanges dialog box by switching to the Runtime envi-
ronment, creating a new document, saving it to disk, modifying its 
contents, and then quitting to the Design environment. 

The Save Changes dialog box should appear when you choose Quit.

Adding an Open Menu Item
Now that you have implemented the Save and Save As com-
mands, the user needs to be able to open any of the documents 
that he has saved. The following exercise implements an Open 
menu item. You will:

■ Add the Open menu item,
■ Enable the menu item,
■ Write a menu handler for the item.

Creating the Open Menu Item
To create the Open menu item, do this:
Working with Documents 61



62

Working with Documents
1. Double-click the Menu item in the Project window and select the 
blank menu item in the File menu.

If the Menu Editor does not open, check to see if the Debug . Kill menu item 
is active. If it is, choose it.

2. In the Properties Window, enter Open… in the Text property area, O 
in the CommandKey property area, and FileOpen in the Name area 
(without the “…”).

3. Drag the Open menu item between the New and Save menu items. 

Like the New menu item, the Open menu item should be 
available even if there are no open documents. Therefore we are 
going to use the Application object to manage the menu item.

To enable the Open menu item, do this:

1. Highlight the App object in the Project Window and press Option-
Tab to open the Code Editor for App.

2. Expand the Events item and select the EnableMenuItems item.

3. Add the following code to end of the EnableMenuItems method:

FileOpen.Enabled=True

Handling the Menu Item
To handle the Open File menu item, do this:

1. Choose Edit . New Menu Handler… to create a menu handler for 
Open.

2. Select the FileOpen menu handler in the New Menu Handler dialog 
and enter the following code into the FileOpen menu handler in the 
Code Editor:

Dim f as FolderItem
Dim w as TextWindow
f=GetOpenFolderItem("text") //displays open-file dialog
If f <> nil then //the user clicked Open
 w=New TextWindow //create new instance of TextWindow
 f.OpenStyledEditField w.TextField
Working with Documents



Adding an Open Menu Item
 w.Document=f //assign f to document property of TextWindow
 w.title=f.Name //assign name of f to title property of w
End if

The first two lines of this method create a new FolderItem 
object—a reference to a document—and a new instance of the 
TextWindow class to display the document. At this point, f 
contains no value, it is just a container that is capable of referring 
to a document. Similarly, the object “w” doesn’t actually refer to 
a new instance of TextWindow until the New function creates it.

The method then calls the global method GetOpenFolderItem 
which displays the open-file dialog box and returns a reference to 
the document that the user selects. The parameter (“text”) 
instructs the GetOpenFolderItem method to display only text 
documents. 

If the user successfully opens a text document, the 
GetOpenFolderItem returns a reference to the document in the 
FolderItem object, f. The code first tests whether f is still nil—it 
would be nil if the user cancelled out of the open-file dialog—
before creating a new window for the document and calling the 
OpenStyledEditField method of the FolderItem class. This method 
places the text that is now in f into the TextField belonging to the 
new instance of TextWindow.

The menu handler then sets the Document property of 
TextWindow to the FolderItem (the document the user selected) 
and sets the title of the window to the name of the document.

If you are confused about how the various calls to built-in methods work, con-
sult the online reference entries for FolderItem, GetOpenFolderItem, and the 
Window class.

3. Save your project.

4. Choose Debug . Run and try out the Open and Save commands.
Working with Documents 63



64

Working with Documents
5. When you are finished, quit the application to return to the Design 
environment.

Review
In this chapter you learned how to add the capability to open, 
create, close, and save documents in your application.

To Learn More About: Go to:

REALbasic Files REALbasic Developer’s Guide: Chap-
ters 6, 7, 8.

REALbasic commands and language REALbasic Language Reference 
Working with Documents



CHAPTER 5 Working with Text
In this chapter you will work with the styled text features in 
REALbasic. You will implement Style and Size menus. These 
menus allow the user to apply a different style and font size to 
selected text. Your code will also place check marks next to the 
currently selected style and font size so that the user knows the 
current settings.
REALbasic Tutorial 65



66

Working with Text
Getting Started
Locate the REALbasic project file that you saved at the end of last 
chapter (“MySimpleText-ch4”). Launch REALbasic and open the 
project file. If you need to, you may use the file 
“MySimpleText-ch4” that is located in the “Ch 4 Files” folder.

Configuring TextField for Styled Text
Before implementing the Style and Size menus, you need to tell 
REALbasic to allow the TextField to accept multiple font styles and 
sizes. You do this by setting the Styled property of the TextField.

To configure the TextField for styled text, do this:

1. Double-click the TextWindow item in the Project Window.

The window opens in a Window Editor. Its properties are now dis-
played in the Properties Window.

2. Click on the TextField in the window and use the Properties Window 
to set the Styled property.

3. Close the Window Editor.

Implementing the Style Menu
To change the style of document text, you need to add a Style 
menu to using the Menu Editor. Your Style menu will contain 
menu items for Plain, Bold, Italic, and Underline. You could also 
add the Outline, Shadowed, Condensed, and Extended styles 
using exactly the same process that is explained in this chapter. 
The latter styles are supported only on applications built for the 
Working with Text



Implementing the Style Menu
Macintosh platform. In the tutorial, you will implement only the 
basic four styles to avoid redundant steps.

You will first use the Menu Editor to add the new menu and 
menu items. You will then enable the menu items, install code 
that places a check mark next to the currently selected style and 
font size, and write the menu handlers for the Style menu items.

Creating the Style Menu and its Menu Items
To create the Style menu, do this:

1. Double-click the Menu item in the Project Window.

2. Select the blank item in the menu bar.

3. Use the Property Window to set its Text property to Style.

The Style menu now appears in the menu bar.

4. Select the blank menu item in the Style menu and use the Properties 
Window to set its Text to Plain Text and CommandKey to T.

5. Add a new menu item with Text Bold and CommandKey B. Select the 
Bold property so the menu item appears in bold.

6. Add a new menu item with Text Italic, and CommandKey I. Select 
the Italic property so the menu item appears in italic.

7. Add a new menu item with Text Underline, and CommandKey U. 
Select the Underline property so the menu item is underlined.

Your Style menu should look like that shown in Figure 32.
Working with Text 67



68

Working with Text
FIGURE 32. Newly created Style menu.

8. Close the Menu Editor and save your project as “MySimpleText-ch5”.

Enabling the Style Menu Items
Next, you need to enable the new menu items. You enable these 
menu items by adding code to the EnableMenuItems event 
handler in the TextWindow Code Editor.

To enable the menu items, do this:

1. Select TextWindow in the Project Window and open its Code Editor 
by typing Option-Tab.

2. Expand the Events item in the Browser and click the EnableMenu-
Items event handler.

3. Add the following code to end of the method:

// Enable Style menu items
StylePlainText.Enabled=True
StyleBold.Enabled=True
StyleItalic.Enabled=True
StyleUnderline.Enabled=True

Handling the Style Menu Items
As you would expect, you need to add a menu handler for each 
new menu item. The menu handlers that you will add will use a 
Working with Text



Implementing the Style Menu
method, SetPlainStyleMenu, which is used several times to manage 
the Plain Text menu item. It is convenient to add this method first.

To create SetPlainStyleMenu, do this:

1. Open the Code Editor for TextWindow.

2. Choose Edit . New Method…

The New Method dialog appears.

3. Enter SetPlainStyleMenu as the method name. It has no parameters.

4. Click OK to close the dialog.

The Code Editor displays the method name in the Browser.

5. Enter the following code in the method:

Dim start, length, i as Integer
if TextField.selbold or TextField.selitalic or 
  TextField.selunderline then
 StylePlainText.Checked=False
else
 StylePlainText.Checked=True //assume selected text is plain
 Start=TextField.SelStart
 Length=TextField.SelLength
 For i=Start to Start+Length
  TextField.SelStart=i
  TextField.SelLength=1
  if TextField.selbold or TextField.selitalic or 
     TextField.selunderline then
    StylePlainText.Checked=False
   Exit
  End if
 Next
 //now restore the selected text
 TextField.SelStart=Start
 TextField.SelLength=Length

 styleBold.checked=False
 styleItalic.checked=False
 styleUnderline.checked=False
end if

The first If statement uses the SelBold, SelItalic, and SelUnderline 
properties of an EditField. In this statement, they test whether the 
selected text is bold, italic, or underline. If so, it unchecks the Plain-
Working with Text 69



70

Working with Text
Text item. If the selected text is not bold, italic, or underlined, then it 
checks the Plain menu item.

The Code Editor should now look like Figure 33 on page 70. Notice 
that the long If…then conditions must be entered on one line in the 
Code Editor.

FIGURE 33. The SetPlainStyle method.

6. Save your project.

To handle the Style menu events, do this:

1. Use the Edit . New Menu Handler command to create new menu 
handlers for each of the four menu items in the Style menu.

2. Add the following code to the StylePlainText menu handler: 

//remove all styles from the selected text
TextField.selbold=false
TextField.selitalic=false
TextField.selunderline=false
SetPlainStyleMenu
Working with Text



Implementing the Style Menu
The first three lines turn off bold, italic, and underline from the 
selection. The last line calls the SetPlainStyleMenu, which will 
check the Plain menu since the bold, italic, and underline 
properties are all False.

3. Add the following code to the StyleBold menu handler:

TextField.ToggleSelectionBold
StyleBold.Checked=TextField.SelBold
SetPlainStyleMenu

The first line toggles (reverses) the Bold attribute for the selected 
text (ToggleSelectionBold is a method of an EditField and 
TextField was derived from the EditField class). The second line 
checks the Bold menu item if the toggling applies bold or 
unchecks it if the toggling removes bold. The SetPlainStyleMenu 
method checks or unchecks the Plain menu item, depending on 
whether the toggling adds or removes the Bold attribute.

The next steps use the same logic to manage the italic and 
underline text attributes.

4. Add the following code to the StyleItalic menu handler:

TextField.ToggleSelectionItalic
StyleItalic.Checked=TextField.SelItalic
SetPlainStyleMenu

5. Add the following code to the StyleUnderline menu handler:

TextField.ToggleSelectionUnderline
StyleUnderline.Checked=TextField.SelUnderline
SetPlainStyleMenu

6. Save your project.

Managing Changes to the Text Selection
The final step is to add code that places a check mark next to the 
current style when the text selection changes. Without this 
addition, the Style menu would not be properly updated when 
Working with Text 71



72

Working with Text
the user moves the insertion point to text in a different style 
without actually changing the text style.

To do this, you will add code to the SelChange event handler of 
the TextField. This event runs when the text selection has changed.

To manage the Style menu check mark, do this:

1. In the Code Editor for TextWindow, expand the Controls item and 
then expand the TextField item. 

2. Click on SelChange and enter the following code:

//uncheck all style items
StyleBold.Checked=False
StyleItalic.Checked=False
StyleUnderline.Checked=False

//now check the appropriate items
StyleBold.Checked=Me.SelBold
StyleItalic.Checked=Me.SelItalic
StyleUnderline.Checked=Me.SelUnderline
SetPlainStyleMenu

The use of “Me” in this code is a reference to the event handler’s 
control, TextField. In other words, Me.SelBold indicates whether 
the currently selected text in TextField is bold. If the selected text 
is Bold, the corresponding menu item is checked; otherwise, it is 
not. As before, the SetPlainStyleMenu method manages the Plain 
menu item.

Creating the Size Menu
In this section you will create a Size menu and several menu items 
that specify a particular font size. You will use an array to manage 
the menu items in the Size menu. An array is simply a multi-
valued object. It has only one name but several elements. In this 
Working with Text



Creating the Size Menu
case, the array elements correspond to the Size menu items. The 
elements are managed by the Index property of the array 
elements. Arrays in REALbasic are generally zero-based, meaning 
that the first element of the array has an index value of zero. For 
example, the notation “aControl(2)” actually refers to the third 
element of the array aControl.

Creating the Size Menu and its Menu Items
In this exercise, you will create a Size menu and menu items 
corresponding to the font sizes of 9, 10, 12,14, 18, 24, 36, 48, 
72, and 128. Each menu item will have the same Name (“Size”) 
but have different Text and Index properties. As you know, the 
Text property controls the text of the menu item. Because these 
menu items will be managed by an array, both the Name and the 
Index properties will be used to refer internally to a particular 
menu item.

To create the Size menu, do this:

1. Double-click the Menu item in the Project Window.

2. Select the blank item on the menu bar.

3. Use the Property Window to set its Text property to Size.

4. The Size menu now appears in the menu bar.

5. Select the blank menu item in the Size menu and use the Properties 
Window to set its Name to Size, Index to 0 (zero), and Text to 9.

This menu item is the first element of the Size array, so the value of 
the index property is zero. In the next step, you will create nine 
more array elements. REALbasic now “knows” that you want to cre-
ate an array, so it will increment the value of the Index property for 
you when you set the Name of each menu item to Size 

If you forget to specify the value of Index for the first menu item, REALbasic 
will ask you whether you want to create an array when you give the second 
menu item the same Name as the first item. Otherwise, it will increment the 
value of Index automatically when you enter “Size” as the Name.
Working with Text 73



74

Working with Text
6. Continue adding menu items with the Name Size for all menu items 
and Text properties of 10, 12, 14, 18, 24, 36, 48, 72, and 128. In other 
words, the Size menu items should be specified as follows:

Your Size menu should look like that shown in Figure 34.

FIGURE 34. Newly created Size menu.

7. Close the Menu Editor and save your project as “MySimpleText-ch5”.

TABLE 5. Properties of the Size menu items.

Menu Item Name Text Index

9 Size 9 0

10 Size 10 1

12 Size 12 2

14 Size 14 3

18 Size 18 4

24 Size 24 5

36 Size 36 6

48 Size 48 7

72 Size 72 8

128 Size 128 9
Working with Text



Creating the Size Menu
Enabling the Size Menu Items
Next, you need to enable the new menu items. You enable these 
menu items by adding code to the EnableMenuItems event 
handler in the TextWindow Code Editor. Since the menu items 
are an array, you can use a loop with an index counter to enable 
the items.

To enable the menu items, do this:

1. Select TextWindow in the Project Window and open its Code Editor 
by typing Option-Tab.

2. Expand the Events item in the Browser and select EnableMenuItems.

3. Add the following line as the first line of the method:

Dim i as Integer

The variable i will be the index counter for the loop. You must place 
declarations (which define the data types of variables) prior to any 
‘regular’ lines of code.

4. Add the following lines to the end of the method:

//enable font size menu items
for i=0 to 9
 Size(i).Enabled=True
next

Adding the Menu Handler
The menu handler for the Size menu items uses a method, 
SetSizeMenu. It places a check mark next to the selected Size 
menu item by setting the value of the Checked property of the 
menu item on-the-fly. You can add this before writing the menu 
handler itself.

To add the SetSizeMenu method, do this:

1. With the Code Editor for TextWindow in the front, choose Edit . 
New Method.
Working with Text 75



76

Working with Text
2. In the New Method dialog box, enter the Method name as 
SetSizeMenu and parameter FontSize as Integer.

3. The New Method dialog box should look like Figure 35.

FIGURE 35. The SetSizeMenu declaration.

4. Enter the following code into the Code Editor for SetSizeMenu:

Dim i as Integer
For i=0 to 9
 if Size(i).Text=Str(FontSize) Then
  Size(i).Checked=True
 else
  Size(i).Checked=False
 end if
Next

The If statement determines whether the Text property of the ith 
Size menu item is equal to the FontSize passed to the method. If 
so, it checks that menu item.

Now, you can add the menu handler itself. It uses a Select Case 
structure to determine which menu item was selected and 
change the font size. 

5. Choose Edit . New Menu Handler and choose Size from the pop-up 
menu.

Notice that you need only one menu handler for all the Size menu 
items. REALbasic understands that there is an array controlling this 
group of menu items and adds the index of the array as a parameter 
in the menu handler.
Working with Text



Creating the Size Menu
6. Enter the following menu handler code.

Dim i as Integer
For i=0 to 9
 Size(i).Checked=False
Next
Select Case Index
Case 0
 TextField.SelTextSize=9
Case 1
 TextField.SelTextSize=10
Case 2
 TextField.SelTextSize=12
Case 3
 TextField.SelTextSize=14
Case 4
 TextField.SelTextSize=18
Case 5
 TextField.SelTextSize=24
Case 6
 TextField.SelTextSize=36
Case 7
 TextField.SelTextSize=48
Case 8
 TextField.SelTextSize=72
Case 9
 TextField.SelTextSize=128
End Select
SetSizeMenu Val(Size(Index).Text)

The menu handler uses the SelTextSize property of the EditField 
class to set the font size of the selected text. The last line of the 
menu handler passes the selected font size (as an integer) to 
SetSizeMenu. This method places a check mark next to the 
selected menu item.

Managing Changes to the Text Selection
The final step is to add code that places a check mark next to the 
currently selected font size when the text selection changes. 
Without this addition, the Size menu would not be properly 
Working with Text 77



78

Working with Text
updated when the user moves the insertion point to text in a 
different font size. That is, if the user selected text and changed 
its font size and then moved the insertion point to text out of the 
selection, the Size menu would not update. 

Since this is a property of the TextField, the code is added to the 
SelChange property of TextField. 

To manage checking and unchecking Size menu items, do this:

1. In the Code Editor for TextWindow, expand the Controls item and 
then expand the TextField item.

2. Highlight the SelChange item and add the following line of code:

SetSizeMenu Me.SelTextSize

This line of code runs SetSizeMenu when the text selection changes. 
It passes the font size of the current text selection to SetSizeMenu.

3. Save your project.

Testing the Style and Size Menus
Now that all the code is in place, you are ready to see how it 
works.

To use the styled text editor, do this:

1. Choose Debug . Run and enter some text in the text editor. 

2. Select some text and try changing the font size and style. 

Notice that the check marks in both menus show the font size and 
style.

3. When you are finished testing, choose File . Quit to return to the 
Design environment.
Working with Text



Printing Styled Text
Printing Styled Text
Now that you can enter text and change the font, font size, and 
style of selected text, you will want to be able to print out 
documents that retain your styled text attributes. 

In this section, you will add Page Setup and Print items to the File 
menu to accomplish this task.

Creating the Page Setup and Print Menu Items

To create the menu items, do this:

1. Double-click the Menu item in the Project window and select the 
blank menu item in the File menu.

2. In the Properties Window, enter Page Setup… in the Text area and 
press Enter.

REALbasic automatically assigns the Name FilePageSetup.

3. Next, select the blank menu item in the File menu and enter Print… 
in the Text area and press Enter.

4. Assign P to the CommandKey property.

5. Position the two new menu items between the Save As and Quit 
menus. 

6. Select the empty menu item at the bottom of the Edit menu and 
enter a dash “-” as its Text property.

This creates a separator between groups of menu items. 

7. Drag the divider between the Save As and Page Setup menu items.

8. Create another divider and drag it between the Print and Quit menu 
items. 

9. Close the Menu Editor.
Working with Text 79



80

Working with Text
Enabling the Page Setup and Print Menu Items
You want the user to be able to access these menu items 
whenever a document window is open, so you should enable 
them in TextWindow’s Code Editor.

To enable the menu items, do this:

1. In the Code Editor for the TextWindow window, expand the Events 
item.

2. Highlight the EnableMenuItems event and add the following line to 
the existing code:

FilePageSetup.Enabled=true
FilePrint.Enabled=true

Handling the Page Setup Menu Item

To manage the user’s selections in the Page Setup dialog box, you 
need to create a PrinterSetup object. This object has a property, 
SetupString, that contains many of these selections. You will first 
add this property to TextWindow’s Code Editor.

To add the property, do this:

1. Choose Edit . New Property and enter PageSetup as String in the 
Property definition dialog box.

2. Click OK to close the window.

Next, you need to write the menu handler for the Page Setup 
menu item.

To add the Page Setup menu handler, do this:

1. Choose Edit . New Menu Handler and choose FilePageSetup from 
the pop-up menu.

2. Enter the following code in the Page Setup menu handler:
Working with Text



Printing Styled Text
Dim ps as PrinterSetup
ps=New PrinterSetup
If PageSetup <> "" then
 ps.setupstring=PageSetup 
end if
If ps.PageSetupDialog then
 PageSetup=ps.setupstring
end if

The PrinterSetup property, ps.SetupString, contains the page 
setup selections that the user makes in the Page Setup dialog 
box. The second If statement displays the Page Setup dialog box. 
If the user clicks OK, ps.PageSetupDialog returns True and the 
SetupString is assigned to the PageSetup property.

The menu handler uses the PageSetup property to store the user’s 
selections.

Handling the Print Menu Item
You use an object of type StyledTextPrinter to print styled text. It 
uses its DrawBlock property do “draw” the styled text on the 
page.

To add the Print menu handler, do this:

1. Choose Edit . New Menu Handler and choose FilePrint from the 
pop-up menu.

2. Enter the following code in the Print menu handler:

Dim stp as StyledTextPrinter
Dim g as Graphics
Dim ps as PrinterSetup
Dim pageWidth as Integer
Dim pageHeight as Integer
ps=new PrinterSetup

If PageSetup <> "" then //PageSetup contains properties
 ps.setupString=PageSetup
 pageWidth=ps.Width
Working with Text 81



82

Working with Text
 pageHeight=ps.Height
// open Print dialog with Page Setup properties
 g=openPrinterDialog(ps) 
else
 g=openPrinterDialog() //open dg w/o Page Setup properties
 pageWidth=72*7.5 //default width and height
 pageHeight=72*9
end if
If g <> nil then //user didn’t cancel Print dialog
 stp=TextField.StyledTextPrinter(g,pageWidth)
 stp.drawBlock 0,0,pageHeight
End if

The menu handler uses the StyledTextPrinter method of the 
EditField class to create a StyledTextPrinter object (“stp”). If the 
user used the Page Setup dialog box to set properties, the 
PageSetup property is not null and its properties are used for 
printing. Otherwise, default page setup properties are used. 

If the user accepts the Print dialog, the DrawBlock method is used 
to draw the contents of TextField to the printer.

Testing Styled Text Printing
Now that styled text printing has been installed in your 
application, you are ready to see how it works.

To print styled text, do this:

1. Choose Debug . Run and enter some text in the text editor. 

2. Select some text and change the font size and style. 

3. Use the Page Setup and Print menus to test styled text printing.

4. When you are finished testing, choose File . Quit to return to the 
Design environment.
Working with Text



Review
Review
In this chapter you learned how to add the capability to work 
with styled text in your application.

To Learn More About: Go to:

REALbasic Text Handling REALbasic Developer’s Guide: Chap-
ters 7, 8.

REALbasic commands and language REALbasic Language Reference
Working with Text 83



84

Working with Text
Working with Text



CHAPTER 6 Creating Dynamic Menus
In this chapter you will learn how to create a menu whose items 
will be created on-the-fly when the user starts his copy of the 
application. You will add a Font menu to the application and add 
code that will load the names of the fonts installed on the user’s 
computer at the time he starts the application. 

Unlike the Style and Size menus, you cannot specify the Font menu 
items in advance. Different users will see different Font menus.
REALbasic Tutorial 85



86

Creating Dynamic Menus
Getting Started
Locate the REALbasic project file that you saved at the end of last 
chapter (“MySimpleText-ch5”). Launch REALbasic and open the 
project file. If you need to, you can use the file 
“MySimpleText-ch5” that is located in the “Ch 5 Files” folder.

Implementing the Font Menu
Implementing the Font menu involves the same basic steps for 
menu creation that you learned in earlier chapters. The key differ-
ence here is that you will add a method that loads the names of 
existing fonts into an array. This method runs when the applica-
tion starts up.

First, you add the Font menu to the menubar.

To create the Font menu, do this:

1. Open the Menu Editor from the Project Window.

2. Select the blank item on the menu bar.

3. Change its Text property to Font.

The Font menu should look like that shown in Figure 36.

FIGURE 36. Font menu and Its Properties Window.
Creating Dynamic Menus



Implementing the Font Menu
4. In the Menu Editor, drag the highlighted Font menu so that it lies 
between the Edit and Style menus.

As you drag, a vertical bar in the menubar indicates the position of 
the Font menu during the drag.

5. Select the empty menu item in the Font menu and enter FontName 
as the Text property.

The Name property is automatically assigned “FontFontName”.

6. Enter 0 (zero) in the Index property of the FontFontName menu 
item.

The Menu Editor and the Properties window should look like that 
shown in Figure 37.

FIGURE 37. Updated Font menu and Its Properties Window.

7. Close the Menu Editor and save your project as MySimpleText-ch6.

Building the Font Menu
The menu items for the Font menu are built when the user 
launches the application. We, therefore, want to add this code to 
the Application class, not to the text editor window. The code will 
run when the application’s Open event occurs, that is, when the 
application itself opens. (There is no need to rebuild the Font 
menu for each window instance, for example.) 
Creating Dynamic Menus 87



88

Creating Dynamic Menus
You should not be surprised to see that we will load the font 
names into an array.

You will write a method for the Application class’s Open event 
handler that builds the menu items from the fonts installed in the 
user’s operating system.

To build the Font menu items, do this:

1. With the Project Window in the front, highlight the App class and 
press Option-Tab to bring the Application class’s Code Editor to the 
front.

2. Click the disclosure triangle next to the Events item to display all of 
the event handlers for the App object.

3. Select the Open event handler.

4. Add the following code to the method: 

Dim m as MenuItem
Dim i as Integer

//build the font menu
FontFontName(0).text=Font(0)
For i=1 to FontCount-1
 m=New FontFontName
 m.Text=Font(i)
Next

This method uses the global Font function which returns the name 
of the ith font on the user’s computer. The first font is handled sepa-
rately, since we already created a menu item for it. Menu items for 
the remaining fonts are created dynamically using the New function. 
FontFontName is an instance of the MenuItem class.

The code builds a new menu item (m) for each font and assigns its 
name to the Text property of the menu item.

The Code Editor for App should look like that shown in Figure 38.
Creating Dynamic Menus



Implementing the Font Menu
FIGURE 38. App Object with code added to its Open event handler.

5. Close the App Code Editor and save your project.

Enabling the Font Menu
Since Font menu items should be enabled only when a document 
is open, we will enable them in TextWindow.

To enable the Font menu, do this:

1. Open TextWindow’s Code Editor from the Project Window.

2. Select the EnableMenuItems event handler from the Browser.

3. Add the following code to the end of the method:

// Enable all fonts in the Font menu
For i = 0 to FontCount - 1
 FontFontName(i).Enabled = True
Next

The event handler uses the FontCount function to determine how 
many fonts are on the user’s computer.

The Code Editor should look like that shown in Figure 39 on 
page 90.
Creating Dynamic Menus 89



90

Creating Dynamic Menus
FIGURE 39. EnableMenuItems with font enabling added.

4. Save your project.

Handling the Font Menu
The Font Menu menu handler needs to set the currently selected 
text to the font that the user chooses from the Font menu. This 
will be done with the SelTextFont property of the TextField. It also 
needs to add a check mark next to the name of that font.

To handle Font menu events, do this:

1. Open the Code Editor for TextWindow create a new menu handler 
for the FontFontName menu item (choose Edit . New Menu Han-
dler…).

The New Menu Handler dialog box should look like that shown in 
Figure 40.

FIGURE 40. New Menu Handler dialog box.
Creating Dynamic Menus



Implementing the Font Menu
2. Click OK.

The Code Editor displays the FontFontName menu handler. As was 
the case for the Size menu, REALbasic understands that all the Font 
menu items are controlled by an array. The menu handler includes 
an Index parameter so that you can manage all the menu items 
using one menu handler.

3. Add the following code to the FontFontName menu handler:

TextField.SelTextFont=Font(Index)

This line of code sets the font of the selected text to the font 
selected in the Font menu. Next, you need to add code that 
places a check mark next to the name of this font in the Font 
menu. This code loops through the font names in the Font menu 
and finds the one whose name matches the name of the font of 
the selected text.

4. Add the following declaration as the first line of the FontFontName 
menu handler:

Dim i as Integer

5. Now, add the following code after the last line of the menu handler:

For i=0 to FontCount-1
 if FontFontName(i).text = Font(index) then
  FontFontName(i).Checked = True
 else
  FontFontName(i).checked = False
 End if
Next

This code loops through the names of all the installed fonts and 
checks the selected font.

Finally, you need to add similar code to the SelChange event of 
the TextField to set the check mark whenever the text selection 
changes. This occurs, for example, when the user selects text, 
makes a selection from the Font menu and then moves the 
Creating Dynamic Menus 91



92

Creating Dynamic Menus
insertion point. The Font menu must update to indicate the Font 
of the new selection.

1. Open the SelChange event of TextField and enter the following dec-
larations as the first two lines of the method:

Dim i as Integer
Dim theFont as String

2. Next, add the following lines after the last line of the method:

//check the correct font when the selection changes

TheFont = Me.SelTextFont
If TheFont <> "" then
 For i=0 to FontCount-1
  If FontFontName(i).text = TheFont then
   FontFontName(i).Checked = True
  Else
   FontFontName(i).Checked = False
  End if
 Next
End if

The variable TheFont stores the name of the selected font. The 
For…Next loop compares this name to the names of every font in 
the Font menu and checks the menu item whose name matches 
TheFont.

3. Save your project.

4. Choose Debug . Run (x-R) to test the Font menu.

Notice that you can now change the font, font size, and style of 
selected text.

5. After you’re done testing the application, choose File . Quit (x-Q) 
to return to the Design Environment.
Creating Dynamic Menus



Review
Review
In this chapter you learned how to dynamically create menu 
items in your application.

To Learn More About: Go to:

REALbasic Font Handling REALbasic Developer’s Guide: Chap-
ters 3, 4, 7.

REALbasic Menu Handling REALbasic Developer’s Guide: Chap-
ters 3, 5, 7.

REALbasic commands and language REALbasic Language Reference 
Creating Dynamic Menus 93



94

Creating Dynamic Menus
Creating Dynamic Menus



CHAPTER 7 Communicating 
Between Windows
In this chapter you will work with object communication features 
in REALbasic. You will learn how to:

■ Add a Find dialog box to your application
■ Add code to your application to allow communication 

between the Find dialog box and the text editor

The Find function that you will build is a simple function that 
searches from the text insertion point to the end of the text. It 
does not contain an option to go back and start from the 
beginning of the document to the text insertion point, although 
you could easily add this capability later. This Find function is not 
case-sensitive.
REALbasic Tutorial 95



96

Communicating Between Windows
Getting Started
Locate the REALbasic project file that you saved at the end of last 
chapter (“MySimpleText-ch6”). Launch REALbasic and open the 
project file. If you need to, you may use the file 
“MySimpleText-ch6” that is located in the “Ch 6 Files” folder.

Implementing the Find Dialog Box
By now you are familiar with the process of adding a menu item, 
enabling it, and adding a menu handler. The new feature in this 
chapter is that the dialog box that is displayed by the menu item 
must communicate with another window in the application.

You will start by adding a menu item for the Find function to the 
Edit menu.

Creating the Menu Item
To create the menu item, do this:

1. Double-click the Menu object in the Project Window.

2. Select the Edit menu on the menu bar.

3. Select the empty menu item at the bottom of the Edit menu and 
enter Find… as its Text property.

The Name property automatically is filled in as “EditFind” in the 
Properties Window.

4. Type an F for the CommandKey property.

5. Select the empty menu item at the bottom of the Edit menu and 
enter a dash “-” as its Text property.

This creates a divider between groups of menu items. 

6. Drag the divider between the Clear and Select All menu items.
Communicating Between Windows



Implementing the Find Dialog Box
The Edit menu and the Find menu item should look like that shown 
in Figure 41.

FIGURE 41. The Find menu item.

7. Close the Menu Editor and save your project as “MySimpleText-ch7”.

Enabling the Find Menu Item
The Find menu should only be enabled when a document 
window is open, so you enable it in TextWindow's Code Editor.

To enable the menu item, do this:

1. Open the Code Editor for TextWindow from the Project Window.

2. Select the EnableMenuItems event handler from the Browser.

3. Add the following code to the end of the method:

EditFind.Enabled = True

The Code Editor should look like that shown in Figure 42 on 
page 98.
Communicating Between Windows 97



98

Communicating Between Windows
FIGURE 42. Updated Code Editor for EnableMenuItems.

4. Close the Code Editor and save your project.

Creating the Find Dialog Box
The next task is to create the Find dialog box itself. You will use 
the same process that you used in Chapter 4 to create the dialog 
box described in the section “Adding a ‘Save Changes’ Dialog 
Box” on page 52. You create a new window, add controls to the 
window, and assign properties to the controls. When you are 
finished, the Find dialog box will look like Figure 43 on page 99:
Communicating Between Windows



Creating the Find Dialog Box
FIGURE 43. Find dialog box as seen in the Design and Runtime 
environments.

Creating the Dialog Box
You begin by adding a new window to the project.

To create the dialog box, do this:

1. With the Project Window as the frontmost window, choose 
File . New Window.

REALbasic adds a window to the project and names it Dialog1.

2. Use Dialog1’s Properties Window to change its name to 
FindWindow.

3. Change the window’s Width to 300 and Height to 79.

4. Deselect the GrowIcon and ZoomIcon properties.

These properties are deselected because FindWindow will be a 
fixed-sized dialog box.

The following steps add the controls to the empty window.

1. If it is not already open, double-click FindWindow in the Project Win-
dow to display it in a Window Editor.

2. Use the Tools Window to drag an EditField control to the top-left 
area. This control will serve as the entry area for the text to be 
searched for.

Design

Runtime
Communicating Between Windows 99



100

Communicating Between Windows
3. Click on the EditField control and, using the Properties Window, 
assign it the properties shown in Table 6.

4. Next, drag a PushButton from the Tools Window to the area occu-
pied by the Cancel button in Figure 43 on page 99.

5. Select the Pushbutton control in FindWindow and choose 
Edit . Duplicate (x-D) to create the Find pushbutton.

6. Drag the Find pushbutton into place, letting REALbasic align it to 
the baseline of the Cancel button using the alignment line.

You can use the horizontal and vertical alignment lines to align the 
Find pushbutton to both the Cancel button and the edge of the 
EditField, as shown in Figure 44.

FIGURE 44. Aligning the Find button.

TABLE 6. Properties of the EditField Control

Property Value

Name FindText

Left 13

Top 13

Width 268

Height 22
Communicating Between Windows



Creating the Find Dialog Box
7. Select each pushbutton and make the property assignments shown 
in Table 7.

In the next series of steps, you specify the actions of each control.

1. Click on FindWindow in the Project Window and press Option-Tab to 
open its Code Editor.

2. Expand the Controls item.

You will see the names of the three objects that you just placed in 
FindWindow.

3. Expand FindText and then click the TextChange event handler. It runs 
whenever a user enters text in the Find dialog box. Enter the follow-
ing code.

If Len(Me.Text)>0 then //if the user entered text
 FindButton.Enabled=True
Else
 FindButton.Enabled=False
End if

The If statement determines whether the FindText field contains 
some text after the change (The Me function is a reference to the 
control that owns the event handler—in this case FindText). If so, it 
enables the Find button.

TABLE 7. Properties of the Cancel and Find Pushbuttons

Property
Pushbutton

Cancel Find

Name CancelButton FindButton

Left 145 220

Top 46 46

Width 60 60

Height 20 20

Caption Cancel Find

Default Not checked Checked

Cancel Checked Not checked

Enabled Checked Not Checked

Visible Checked Checked
Communicating Between Windows 101



102

Communicating Between Windows
4. Expand CancelButton and then click Action. Then enter the follow-
ing code:

Self.Close

This line of code closes the window. The Self function is a reference 
to the button’s parent window—not the button.

5. Expand FindButton and then click Action. Then enter the following 
code:

TextWindow(Window(1)).Find FindText.Text
Self.Close

This method uses a method called Find which does the real work. 
It takes as its argument the text the user has entered into the 
dialog box. FindText was derived from the EditField class and Text 
is a property of EditFields. 

The Window function is used to specify the TextWindow in which 
to search. The expression “Window(1)” refers to the second 
window—Window (0) is the Find dialog itself—so Window(1) is 
the frontmost document window. 

The next step is to add the Find method to TextWindow.

1. Select the TextWindow item in the Project Window and press 
Option-Tab to open its Code Editor.

2. Choose Edit . New Method to create the Find method.

3. Enter Find as the method name and Value as String as the parame-
ter. Click OK to display the Code Editor for the Find method.

4. Enter the following into the Find Code Editor.

Dim FoundAt as Integer
FoundAt=inStr(TextField.SelStart,TextField.Text,Value)
If FoundAt>0 then //select the target text
 TextField.SelStart=FoundAt-1
 TextField.SelLength=Len(Value)
Else
 Beep
 MsgBox "The text "+chr(210)+Value+chr(211)+" could not be 
  found."
Communicating Between Windows



Creating the Find Dialog Box
End if

This method locates the string to be searched for (the parameter 
Value) using the InStr function. InStr takes three parameters, the 
position at which to begin the search, the text to search, and the 
text to search for. It then sets the SelStart property of TextField to 
the position of the first highlighted character and SelLength, the 
length of the highlighted text, is set to the length of the string to be 
searched for.

Note that the MsgBox text should be entered on one line. It is split 
into two lines here because of space limitations. The Code Editor 
should look like Figure 45.

FIGURE 45. The Find method in the Code Editor.

The last step is to add the menu handler for the Find menu item. 
The menu handler simply displays the dialog box.

1. With TextWindow’s Code Editor as the frontmost window, choose 
Edit . New Menu Handler.

2. Choose EditFind from the Menu Handler pop-up menu and enter the 
following code into the menu handler method.

FindWindow.Show

“Show” is a method of the Window class. This line of code 
simply displays the dialog box.

3. Save your project.
Communicating Between Windows 103



104

Communicating Between Windows
You are now ready to test the new feature. Choose Debug . Run, 
enter some text, and test the Find menu item. 

Review
In this chapter you learned how to create objects that 
communicate with each other in your application.

To Learn More About: Go to:

REALbasic Object Communication REALbasic Developer’s Guide: Chap-
ters 3, 5, 9.

REALbasic commands and language REALbasic Language Reference
Communicating Between Windows



CHAPTER 8 Wrapping Things Up
In this chapter you will work with the REALbasic Debugger and 
build a stand-alone application from your project. You will learn 
how to:

■ Use the Debugger to find logical errors in your code,
■ Turn your project into stand-alone MacOS and Windows appli-

cations.
REALbasic Tutorial 105



106

Wrapping Things Up
Getting Started
Locate the REALbasic project file that you saved at the end of last 
chapter (“MySimpleText-ch7”). Launch REALbasic and open the 
project file. If you need to, you may use the file 
“MySimpleText-ch7” that is located in the “Ch 7 Files” folder.

Using the Debugger
The REALbasic Debugger is the part of REALbasic that helps you 
fix parts of your application that aren’t working properly. As with 
the rest of REALbasic, the Debugger is easy to use. In fact, you 
probably have already used the Debugger without knowing it.

Automatic Debugging Features

A portion of the REALbasic Debugger is active whenever you 
enter code in your application. The syntax coloring and code 
indentation in the Code Editor is one way that REALbasic proac-
tively helps you to debug your code. Another is automatic syntax 
checking. Whenever you choose Debug . Run, REALbasic checks 
the syntax of all your code and stops when it finds a syntax error.

To demonstrate REALbasic’s syntax checking, do this:

1. Open the Code Editor for TextWindow.

2. Select the EnableMenuItems event handler to display its code.

3. At the top of the method, change the line

dim i as Integer

to 

dim i as Integers
Wrapping Things Up



Using the Debugger
If you are paying attention, you will notice that the color of the data 
type changed from blue to black when you added the ‘s’. This should 
clue you the fact that ‘Integers’ is not a data type that REALbasic rec-
ognizes. But if you were not paying attention, REALbasic will point 
out the syntax error when you try to run the modified application.

4. Now, choose Debug . Run (x-R).

An “Unknown type” error message appears and the offending line 
of code is highlighted. Your Code Editor should look like that shown 
in Figure 46.

FIGURE 46. Syntax error message in the Code Editor.

5. To fix the error, simply delete the extraneous ‘s’ from the line of 
code.

Notice that the color of the data type changes to blue. 
Wrapping Things Up 107



108

Wrapping Things Up
Using the Debugger to Find Logical Errors
Errors that occur while your program is running are usually logical 
errors. To debug these errors, you will need to indicate to the 
REALbasic Debugger where it should check your code.

First, you need to set breakpoints in the source code in the region 
where you think the program is failing. Breakpoints are locations 
in your code where the application will pause and enter the 
Debugger while it is running. Once you are in the Debugger, you 
can examine the current values of variables, properties, and other 
parameters. You can check for unexpected, improper, or 
undefined values and take appropriate corrective action. You can 
also verify that your methods are actually being called when you 
expect them to be called.

Breakpoints don’t alter your code and do not pause a stand-alone 
application built with REALbasic. The following exercise shows 
you how you can pause the application, check on the current 
values of variables, and continue executing a method line-by-line.

To see how the REALbasic Debugger works, do this:

1. Open the Code Editor for TextWindow.

2. In the Browser, expand the Methods item and select the SaveFile 
method.

The SaveFile method is displayed. 

3. Click to the left of the line containing the first “If” keyword to place 
the insertion point there.

4. Choose Debug . Set Breakpoint to place a breakpoint at that line of 
code.

A red diamond icon appears in the margin of the Code Editor, signal-
ling a breakpoint. This breakpoint will cause REALbasic to pause 
when you try to save a document in the Runtime Environment. 
When you try to save a new document, the Debugger will appear 
instead of the save-file dialog box.
Wrapping Things Up



Using the Debugger
Your Code Editor should look like that shown in Figure 47.

FIGURE 47. A breakpoint set in the Code Editor.

5. Save your project as “MySimpleText-ch8”.

6. Choose Debug . Run (x-R) to start your application in the Runtime 
Environment.

7. Type some text into the text editor and choose File . Save (x-S).

Your application stops at the Breakpoint and displays the Code Edi-
tor as shown in Figure 48. A green arrow icon is located in the mar-
gin to the left of the line containing the breakpoint.

FIGURE 48. Debugger stopped at the breakpoint.

8. Locate the windows titled Variables and Stack.
Wrapping Things Up 109



110

Wrapping Things Up
By default, these windows are located on the right side of your 
screen. 

When the execution of an application is paused at a breakpoint, 
the Variables and Stack windows are automatically opened. You 
can then inspect the current values for various properties and 
objects.

The Variables window contains a list of all the variables local to 
the method containing the breakpoint, along with their current 
values. Any objects that are defined in the method have a button 
in place of a value field. If you click the View… button, a window 
called the Object Viewer opens, containing the list of current 
property values for the object.

The Stack Window contains the name of the current method, 
along with any methods that invoked the current method. You 
can check the Stack Window to verify that methods are actually 
called when you expect them to be called.

9. Select the Variables window to make it active.

The Variables window should look like that shown in Figure 49.

FIGURE 49. The Variables Window.

In the Variables window you see that both variables (f and o) are 
undefined. This is as it should be since the document that you are 
Wrapping Things Up



Using the Debugger
trying to save has not yet been saved. The variable f will be 
defined when you actually save the document.

When you are in the Debugger, you can execute code line by line 
and monitor the contents of the Variables Window. You do this 
using the Step Into or Step Over menu items. 

10. Bring the Code Editor to the front and choose Debug . Step Into 
(x-[) until the save-file dialog box appears. 

Each time you select this menu item, the current line of code is exe-
cuted and the green arrow shown in Figure 48 on page 109 moves 
down one line.

11. Save the document under a filename and then examine the Vari-
ables window.

Notice that the f variable now has a View button because it has just 
been defined, as is shown in Figure 50.

FIGURE 50. The Variables Window with a View button for “f”.

12. Click the variable f’s View button to see the current value of f in the 
Object Viewer. 

The Object Viewer will show the absolute pathname to the docu-
ment and the filename that you just gave it.

13. Click OK to close the Object Viewer.

14. Locate the Stack window.

The Stack window lists the current method and should look like that 
shown in Figure 51.
Wrapping Things Up 111



112

Wrapping Things Up
FIGURE 51. The Stack Window.

This is as it should be, i.e., the SaveFile method was called when 
the FileSave method handler was executed.

15. To see your debugging options choose the Debug menu.

The Debug menu should look like that shown in Figure 52.

FIGURE 52. The Debug Menu.

The Step Over and Step Into commands both execute the current 
line of code. The difference is that, if the line of code calls 
another method, Step Over will execute the line without stepping 
through each line of the other method’s code.

16. To resume execution of your application, choose Debug . Run.

17. Choose File . Quit (x-Q) to exit the Runtime environment and 
return to the Design environment.

Please refer to the Developer’s Guide for a complete description 
of REALbasic’s debugger.
Wrapping Things Up



Building a Stand-alone Application
Building a Stand-alone 
Application

If you have tested your project and everything works as expected, 
then you will want to turn your REALbasic project into a 
stand-alone application. As a stand-alone application, your pro-
gram will work like any other MacOS or Windows application.

In fact, once you build a stand-alone version of your REALbasic application, 
you do not need to have REALbasic to run the application.

To create a stand-alone application from your REALbasic project, 
do this:

1. Choose File . Build Application….

A dialog box similar to that shown in Figure 53 on page 114 
appears.
Wrapping Things Up 113



114

Wrapping Things Up
FIGURE 53. The Build Application Dialog.

2. Change the name to “MySimpleText in the Macintosh Application 
Settings area.

3. If you have a Windows computer handy, click the Windows checkbox 
above the Macintosh Application Settings area and enter MySimple-
Text.exe in the Windows Application Settings area.

4. Click Build.

A new application file icon appears in the same folder as your 
REALbasic project file, ready for you to use. If you also created a 
Windows version, its icon appears as well.

FIGURE 54. Macintosh and Windows versions of MySimpleText.
Wrapping Things Up



Review
You can now quit REALbasic and double-click the MySimpleText icon 
from the Finder to edit text to your heart’s content. If you have a 
Windows computer, drag MySimpleText.exe over and try it out.

FIGURE 55. MySimpleText running on Windows.

To learn about the other options in the Build Application dialog, consult the 
REALbasic Developer’s Guide.

Review
In this chapter you learned how to use the REALbasic Debugger 
and to build a stand-alone application from your REALbasic 
project.

To Learn More About: Go to:

Building stand-alone Applications REALbasic Developer’s Guide: Chap-
ter 13.

REALbasic Debugger REALbasic Developer’s Guide: Chap-
ter 10.

REALbasic commands and language REALbasic Language Reference 
Wrapping Things Up 115



116

Wrapping Things Up
Wrapping Things Up



Index
Index

A
App object

building Font menu with 88
event handlers for 88

Application 87
application 7

building standalone 113
debugging 106
debugging your 108
fixing 106
naming 114
running 19
starting 19

Application class 87
array 72, 86

elements of 72
zero-based 73

arrays
zero-based 73

B
boolean 42
breakpoints 108
bugs 105
building a standalone application 113

C
CancelClose event handler 59–61
Canvas control 53

Paint event handler 54
caution icon 54
class

creating a new 37, 38
Code Editor 32, 43, 54

Browser pane 30
command key for displaying 30
dragging example code into 48

Code Editor window 30
Colors Window 15
compiling an application 113
controls 15

EditField 17
Index 117



118

Index
scrollbar 23
locking 24

D
data types

boolean 42
Debug menu 112
Debugger 105
debugging

error messages 107
manual 108
menu options 112
Object Viewer 110
setting breakpoints 108
Stack window 110
Variables window 110, 113

dialog box
creating a 53

document window 23
dynamically created menu items 88

E
E nableMenuItems event handler 30
EditField

event handlers for 49
lock properties 24
MultiLine property 23
Properties Window 18

EditField control 17
EnableMenuItems event handler 75
error messages 107
event handler 37, 49, 50, 54
event handlers 50
event-driven programming 49

F
file types

recognizing 40
files

lesson 11
tutorial 11

Find menu items
adding

Find in Edit menu 96
fixing programming code 105
FolderItem 42
FolderItem class 47, 63
Index



Index
Font menu 86
fonts 86

G
GetOpenFolderItem function 62
GetOpenFolderItem method 63
graphical user interface 7
Graphics class 54
GUI 7

I
IDE 8
indenting lines of code 106
Index property 73, 87
InStr function 103
integrated development environment 8
interface objects 15

L
language

programming 8
local variables 110, 113
locking properties 24

M
Menu Editor 36, 41

opening 28
menu handler 28, 38, 50, 75, 90, 103

adding a 31
menu item

command key property 29
deleting a 29

menu item divider 79
menu item dividers 96
Menu items

adding
Open menu item 61

menu items
adding 28

"Select All" to the Edit menu 28
Close, Save, and Save As… in the File menu 41
Font 86
New in the File menu 36
Style 67, 73

dynamically created 88
enabling
Index 119



120

Index
"Select All" in the Edit menu 30
Close, Save, and Save As… in the File menu 43
Find & Replace 97
Font 89
Open in the File menu 62
Size and Style 68, 75

handling
"Select All" in the Edit menu 31
Close, Save, and Save As… in the File menu 50
Font 90
Open in the File menu 62
Style 70

Index property 73
managed by an array 72

menus
See also menu items

method
adding a 44–46, 102

methods
Stack window 110

MySimpleText 24, 114

N
New function 63, 88
New Menu Handler dialog box 31, 90

O
Object Viewer 110
object-oriented 7
online reference 46–48, 54
Online Reference Window 16
Open 87
Open event 87
Open event handler 88
opening the Menu Editor 28

P
Paint event handler 54
program. See application
programming language

BASIC 7
object-oriented 7

project
REALbasic 24
saving 24

project file 24
Index



Index
Project Window 15
properties 110, 113
Properties Window 15
Property Declaration dialog box 42
PushButton control

properties of 56
Pushbutton tool 56

R
REALbasic

Debug menu 112
Debugger 105
design environment 14

Code Editor Window 30
Colors Window 15
Online Reference Window 16
Project Window 14
Properties Window 14
Tools Window 14
Window Editor 14

MySimpleText application 114
project 113
project file 24
runtime environment 20

running an application 19
runtime environment 20

S
scrollbar 23
SelChange event handler 72, 91
SelChange property 78
Self function 50–51, 52
SelLength property 103
SelStart property 103
SelTextFont property 90
SetSizeMenu method 75
SimpleText 8
stack 110
Stack window 110
standalone application 113
StaticText control 55
StaticText tool 55
styled text

printing 79–82
Super property 37
syntax coloring 106
Index 121



122

Index
T
TextChange event handler 101
Tools Window 15, 52
tutorial files 11

V
Variables window 110, 113

W
window

adding a 99
creating a 53

Window Editor 15
Window function 60, 102
windows

adding properties to 41–42
creating 13, 17
dialog

Build Application… 113
document 23
properties of 17
Index


	Contents
	CHAPTER 1 Introducing REALbasic
	How to Use this Manual
	Who Should Use this Manual
	Presentation Conventions
	Lesson Files
	On Your Mark, Get Set, Go!

	CHAPTER 2 Creating Windows
	Starting Up REALbasic
	REALbasic’s Windows
	Building a Document Window
	Adding an EditField
	Configuring TextField as a Text Editor

	Review

	CHAPTER 3 Creating Menu Items
	Adding a Select All Menu Item
	Adding the Menu Item
	Enabling the Menu Item
	Handling the Menu Item

	Review

	CHAPTER 4 Working with Documents
	Getting Started
	Working with Text Documents
	Creating the New Menu Item
	Enabling the New Menu Item
	Handling the New Menu Item
	File Types

	Saving Documents
	Adding the Save Menu Item
	Adding Properties to TextWindow
	Enabling the Menu Item
	Adding a SaveFile Method
	Using The Online Reference
	Managing the TextHasChanged Property
	Handling the Menu Item
	Adding a Save As Menu Item
	Adding a ‘Save Changes’ Dialog Box
	Creating the Dialog Box
	Displaying the Save Changes Dialog Box

	Adding an Open Menu Item
	Creating the Open Menu Item
	Handling the Menu Item

	Review

	CHAPTER 5 Working with Text
	Getting Started
	Configuring TextField for Styled Text
	Implementing the Style Menu
	Creating the Style Menu and its Menu Items
	Enabling the Style Menu Items
	Handling the Style Menu Items
	Managing Changes to the Text Selection

	Creating the Size Menu
	Creating the Size Menu and its Menu Items
	Enabling the Size Menu Items
	Adding the Menu Handler
	Managing Changes to the Text Selection

	Testing the Style and Size Menus
	Printing Styled Text
	Creating the Page Setup and Print Menu Items
	Enabling the Page Setup and Print Menu Items
	Handling the Page Setup Menu Item
	Handling the Print Menu Item
	Testing Styled Text Printing

	Review

	CHAPTER 6 Creating Dynamic Menus
	Getting Started
	Implementing the Font Menu
	Building the Font Menu
	Enabling the Font Menu
	Handling the Font Menu

	Review

	CHAPTER 7 Communicating Between Windows
	Getting Started
	Implementing the Find Dialog Box
	Creating the Menu Item
	Enabling the Find Menu Item

	Creating the Find Dialog Box
	Creating the Dialog Box

	Review

	CHAPTER 8 Wrapping Things Up
	Getting Started
	Using the Debugger
	Automatic Debugging Features
	Using the Debugger to Find Logical Errors

	Building a Stand-alone Application
	Review

	Index

